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The role of operational definitions in representing uncertainty
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Abstract

An anecdotal introduction of the role of operational definitions in representing uncertainty is followed by a brief history of operational

definitions,withparticularattention to the foundationsofprobabilityand thefuzzyrepresentationsofuncertainty.Ashort summaryofexperience

at the TU Delft points to relevant open questions. These in turn are illustrated by a recent application to NOx emissions in The Netherlands.
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1. Introduction

I asked Didier Dubois at a 1996 meeting of the European

Fusion work group in Lecoutre, France:

How many legs does a squizzel have?

He answered:

First tell me what a squizzel is.

Right answer.

But instead of telling him, I said:

Well, just use your own idea of what you think a squizzel

is, and tell me how many legs it has.

The way he felt then is the way I feel when someone asks:

What is John’s fuzzy membership in the set of tall

people?

or

What is the degree of possibility that the Loch Ness

monster exists?

How is fuzzy membership or degree of possibility

defined? I am not asking for a mathematical definition, I

am asking for an operational definition, that is, for a rule,

which indicates how the mathematical notions are intended

to be interpreted. Leaping over more than a century of

semantic analysis, a modern rendering of this question is the

following.

If Bob says:

The fuzzy membership of John in the set of tall people is

0.7057.to what sentences in the natural language not

involving the word ‘fuzzy’ is Bob committee?

If the set of sentences given in answer to this question is

the empty set, then this is operationally equivalent to the

anatomy of the squizzel.

In this paper, I give a crash course in the modern

philosophy of science, reviewing operational definitions,

their role in the representation of uncertainty and in

‘degenerating problem shifts’. I then draw some lessons

from the over 10,000 expert elicitations performed according

to the probabilistic method of the TU Delft. I explain why, in

my view, the challenge problems miss the challenges

confronting the representation of uncertainty today.

2. Operational definitions: history

It impressed me that most members of the FUSION

workgroup, and many advocates of ‘alternative’ represen-

tations of uncertainty seem unfamiliar with the notion
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of operational definitions. Here is a very brief historical

sketch.

The notion can be traced back at least to the first rational

reconstructions of classical mechanics by Mach [20] and

Hertz [12]. Both authors were troubled by conceptual

problems associated with the notions of force, absolute time

and space. Mach’s approach was to ‘deconstruct’ the

mechanics of Newton by semantic analysis. Defining

‘meaning’ as correspondence with sensations, he tried to

rebuild the theory using only primitive terms which could be

directly associated with sensations. His efforts led him to the

conclusion that the notions of absolute time and space had

no meaning and could be dropped.

Einstein’s 1905 article on special relativity explicitly

applies Mach’s semantic analysis to deconstruct the

classical notion of simultaneity and thus unified classical

mechanics and classical electromagnetism in special

relativity. Semantic analysis has been applied many times

to eliminate redundant or meaningless concepts, which

block progress. After Einstein, the second most spectacular

example is Niels Bohr’s resolution of the wave-particle

duality.

Hertz took a very different approach. He axiomatized

classical mechanics as a formal system and provided

explicit rules for interpreting the primitive terms of this

system in terms of measurements. Hertz’ mechanics, via the

early work of Ludwig Wittgenstein, was the source of

‘formal philosophy of science’. Within this discipline, one

axiomatizes theories in order to study their properties and to

clarify their interpretation. This has evolved into a picture of

theories as layers of two (or more) languages. At the lowest

level is an observation language in which the results of

elementary measurements are described (e.g. ‘the needle

points to 4’). A ‘theoretical language’ with axioms may

contain terms which are directly interpreted in the

observational language, but it’s terms may also be

interpreted in more complicated ways. However, to be

non-trivial, a theory must entail observational statements

which can be checked by experiment.

The term ‘operational definition’ was actually introduced

by Bridgeman in 1927, and similar concepts may be found

in the writings of many philosophers of science (‘coordinat-

ing definitions’, ‘semantic rules’, ‘correspondence rules’,

‘epistemic correlations’, and ‘rules of interpretation’ (see

Ref. [21]). Bridgeman’s concept is somewhat naive in so far

as it recognizes only the simplest way of giving meaning to

abstract expressions. However, his term has perhaps the

widest currency and seems suitable (to me) for discussing

the meaning of probability, possibility, fuzziness and related

concepts.

It has long been recognized that there is no ‘theory free’

or ‘presupposition-less’ interpretation of languages. Rather,

we interpret a theory, expressed in a theoretical language, in

terms of another language, perhaps even the ‘ordinary

language’. The point of doing this is to link up with wider

linguistic communities—that is more or less the history of

semantic analysis in a nutshell.

3. Operational definitions: probability

The above suggests that giving operational definitions is

an essential part of the foundations for a discipline. The

period from 1900 to say 1940 was marked by intense

activity at the foundations of probability. It will be clear that

the choice of axioms is intimately related to the choice of

interpretation. Axioms are evaluated not only with regard to

consistency, but also with regard to their ability to describe

accurately the intended interpretation. Four main types of

interpretations of probability have been proposed.

3.1. Classical interpretation

This is generally attributed to Laplace [19] who defined

probability as, ‘the number of favorable cases divided by the

number of equi-possible cases’. Examples from coin tossing

and dice-throwing were used to illustrate what is meant by

‘equi-possible’. The fact that we no longer hear about this

interpretation is related to the inability of its proponents to

provide an operational definition of equi-possible. Each

proposed operational definition was met by counterexam-

ples and paradoxes.

3.2. Logical interpretation

This was first proposed by Keynes [15] and later taken up

by Carnap [4,5]. The idea was that conditional probability

should be interpreted as partial entailment. The notion of

partial entailment never received a satisfactory interpret-

ation and this interpretation is generally regarded as dead.

3.3. Frequentist interpretation

Von Mises [29] advanced the interpretation of prob-

ability as limiting relative frequencies in a ‘collective’ or

‘random sequence’. The reference to collectives or random

sequences is essential. For example, the relative frequency

of ‘1’s’ in the sequence:

1; 0; 1; 0; 1; 0; 1; 0;…

would not be interpreted as a probability. The frequency

interpretation in fact introduces ‘probability’ as a defined

notion in a new formal system with a new primitive term

collective. Of course, he is obliged to give an operational

definition of collective. Although he could point to ‘random

looking’ sequences, a good axiomatization with operational

definitions was never proposed. Later Kolmogoroff, Martin-

Lof, Schnorr [28] and others did succeed in this. Very

roughly, a random sequence is one which passes all

‘recursive statistical tests’.
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3.4. Subjective interpretation

The above three interpretations, or perhaps we should say

‘interpretation programs’ are ‘objective’ in the sense that

the probability assigned to an event should hold for all

individuals…it should be a matter of rational consensus.

The subjective interpretation interprets probability in

terms of degree of belief of a subject. Different subjects can

have different degrees of belief for one and the same event.

Borel [2] and Ramsey [25] are regarded as founders of

this interpretation. The best exposition is by Savage [27].

Probability is interpreted as ‘degree of belief of a rational

subject’. This degree of belief is measured by observing an

individual’s choice behavior in specific situations. I will

recall a few points here.

There are many ways to operationalize ‘degree of belief’,

but I believe that Savage’s is the best from a philosophical

viewpoint. Degree of belief is interpreted in terms of

rational preference, and preference is operationalized in

terms of choice behavior.

Consider two events:

F : France wins the next World Cup Soccer tournament

U : The USA wins the next World Cup Soccer

tournament.

Consider two lottery tickets:

LF: worth $10,000 if F; worth $100 otherwise

LU: worth $10,000 if U; worth $100 otherwise.

John is offered ONE of these, and he may choose

whichever he wants. Now,

John’s degree of belief in F at least as great as his degree

of belief in U 00is operationalized as

John chooses LF in the above choice situation

We will denote ‘John chooses LF in the above choice

situation’ as LF ^ .LU (this is Savage’s notation).

The following can be proved:

(i) If John’s preferences satisfy the ‘principle of defi-

nition’ (my term for one of Savage’s axioms), then

the degree of belief does not depend on the values used

in the lottery (we can use $30,000 instead of $10,000;

in fact we do not need money at all, we can use any pair

of consequences, as long as one is ‘better than’ the

other).

(ii) If John’s preferences satisfy the dominance axiom,

then his degree of belief in any event is less than or

equal to his degree of belief in the trivial event, and is

greater than or equal to his degree of belief in the

empty event.

(iii) If John’s preferences satisfy the sure thing principle,

then his degree of belief is additive in the following

sense: if F > B ¼ U > B ¼ B; then

Deg BelðFÞ $ Deg BelðUÞ if and only if

Deg BelðF < BÞ $ Deg BelðU < BÞ:

(iv) If John’s preferences are transitive and satisfy a

technical axiom, then there exists one and only one

finitely additive probability measure P which

represents John’s degree of belief in this sense: for

all events A; B :

Deg BelðAÞ $ Deg BelðBÞ if and only if PðAÞ $ PðBÞ

The reader should test these axioms against his/her own

preference structure. Take for this purpose:

B : Belgium wins the next World Cup Soccer tournament

In particular, the reader should verify whether for

him/her:

LF ^ :LU and LU ^ :LB imply LF ^ :LB

LF ^ :LU implies LðF < BÞ ^ :LðU < BÞ:

If so, then modulo a technical axiom, the reader’s

uncertainty is represented by a unique (subjective) prob-

ability measure.

The axioms mentioned above characterize what Savage

means by rational preference. Every axiom has been

discussed, tightened, relaxed, etc. and numerous variations

of this theory have been explored. Interesting as these are,

they remain variations on a theme, and the theme is the

representation of degree of belief as a finitely additive

probability.

This does not mean that there are no problems with this

theory. No formal theory will be wholly adequate to an

informal concept, Cooke [6] elaborates some aspects of

partial belief which are not captured by subjective

probability.

4. Operational definitions: possibility and fuzziness

Given the enormous intellectual effort put into

operationalizing the notion of probability, someone from

my background is unable to understand why the

proponents of alternative representations of uncertainty

show so little interest in operational definitions. What

does it mean to say:

(I) The possibility that France wins the next World Cup

Soccer tournament is greater than the possibility that

Belgium wins the next World Cup Soccer tournament
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or

(II) France belongs to the set of winners of the next

World Cup Soccer tournament with fuzzy membership 0.7,

and Belgium belongs to the set of winners of the next World

Cup Soccer tournament with fuzzy membership 0.6

Why is it not a simple matter to say what these mean? At

least, it would be nice to have answers to the following

questions:

(1) Are possibility and fuzzy membership objective or

subjective?

(2) Is there any implication between statements (I) or (II)

(perhaps relative to a given individual) and (the

individual’s) choice behavior, e.g. with the lotteries

LB and LC?

(3) Is there any implication between (I) or (II) and any

other statements in a language not containing the

words ‘possibility’ and ‘degree of membership’ or

their synonyms?

In the absence of operational definitions, we can only

evaluate the suitability of such putative representations of

uncertainty on the basis of formal properties. Many such

representations, including fuzziness and possibility, have a

feature called ‘truth functionality’ which render them highly

unsuitable as generally applicable representations of

uncertainty. Truth functionality says that the uncertainty

in proposition A AND B is some function of (only) the

uncertainty of A and the uncertainty of B; and similarly for A

OR B: Thus, for example1 Ayyub [1] proposes a fuzzy

representation of the degree of belief or ‘membership

uncertainty’ that element x belongs to set A; the membership

uncertainty that x belongs to A AND B is the minimum of

the membership uncertainties that x belongs to A and that x

belongs to B:

To appreciate what this means, consider the following

example. I get an email from an unknown ‘Quincy’. My

degree of belief or membership uncertainty that Quincy

belongs to the set ‘MEN’ is 1/2, and my degree of belief that

Quincy is a WOMEN is also 1/2. Therefore, my degree of

belief that Quincy is a MAN AND WOMAN is the

minimum of 1/2 and 1/2, or 1/2.

Let me emphasize that I do not claim that operational

definitions of degree of possibility or fuzzy membership are

impossible. Dubois [10] makes a very significant attempt to

provide a Savage-style foundation for possibility theory.

Quoting from this reference: ‘By providing an act-driven

axiomatization of possibility and necessity measures,

possibility theory…becomes an observable assumption

that can be checked for the actual behavior of a decision-

maker choosing among acts, just like subjective probability

after Savage axiomatics. This is why the result of this

paper is significant from the view of Artificial Intelligence

as laying some foundations for qualitative decision theory’

(p. 477).

The value of Dubois’ operational definition is that it

allows us to see what a representation of uncertainty as

degree of possibility or fuzzy membership2 means in terms

of preference. Roughly, it means that the preference

between actions is determined by their best (or worst)

consequence. Thus, the main axiom behind the possibility

representation of uncertainty entails the following

If you prefer $100 to a fair coin bet:

B ¼ [þ$1,000,000 if heads, 2$1,000,000 if tails],

and if you prefer $100 to $99, then you should prefer

$100 to [þ$1,000,000 if heads, $99 if tails].

It is not impossible that such preference behavior is

empirically or normatively valid in some contexts,3 and in

such contexts a possibilistic or fuzzy representation of

uncertainty might be appropriate.

5. Progressive versus degenerating problem shifts

According to the Methodology of Scientific Research

Programs of Lakatos [17], scientific theories do not simply

get verified or falsified by experiment. Rather, research

programs compete with each other in more complex ways.

A program experiences a progressive problem shift when it

generates new concepts, predicts new phenomena, unifies

diverse fields, etc. It goes into a degenerating problem shift

when it is forced increasingly to react to new developments

from other programs, and is increasingly occupied with

translating developments from other programs into its own

terms.

This is perhaps the most realistic approach to the ‘growth

of knowledge’. I mention it briefly here because much of the

literature surrounding alternative representations of uncer-

tainty consists exactly in translating results and techniques

from the probabilistic approach into some alternative

framework. This in itself constitutes a degenerating problem

shift, if not combined with the development of new ideas,

methods and predictions. Up to now the ideas have been

flowing from probability to alternative representations. If

these are to experience a progressive problem shift, then the

flow of ideas must reverse. Without operational definitions

for their primitive terms, however, that will remain

impossible.

1 The following is taken from a review of Ayyub [1] appearing in Fuzzy

Sets and Systems.

2 Dubois considers a possibility measure as equivalent to a fuzzy

membership function.
3 The axioms of Savage’s rational preference and of subjective

probability are claimed to be normatively valid but not empirically valid;

the describe how a rational agent should act and reason under un certainty,

not how they actually do. In this sense, they are comparable to deductive

logic.
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6. Uncertainty analysis

The goal of an uncertainty analysis is a quantitative

representation of uncertainty. According to the subjective

interpretation, uncertainty is represented by subjective

probability. Other representations may be possible, but

these should be supplied with a suitable foundation,

including plausible axioms and operational definitions.

Although many alternative representations have been

proposed, none to date have been given a foundation in

this sense. For practical work, there is at present no viable

alternative to the representation of uncertainty as subjective

probability.

A key question is what role experts play in providing a

quantitative representation of uncertainty. The method

employed at the TU Delft [7] proceeds from the assumption

that individual experts quantify their uncertainty on input

variables, and these uncertainty distributions are combined

using the ‘classical model’. Expert performance is scored on

‘seed’ or ‘calibration’ variables in terms of calibration and

information, and performance based weights are used to

form a weighted combination of experts’ distributions. The

weights satisfy a proper scoring rule constraint. The analyst

does not play an active role, (s)he does not alter experts’

numbers and does not choose weights. Rather, (s)he

merely scores the experts’ assessments and combines

their distributions according to pre-defined objectively

traceable rules.

Other approaches are also applied. Thus, in NUREG/CR-

6372 [22], it is argued that the combined expert distributions

should represent the dispersion of expert views, and that the

analyst should play an active role in subjectively weighting

the experts to achieve this goal.

Thus, the question is who signs off on the uncertainty

assessments, is it the experts or the analyst? Whoever signs

off, using subjective assessments of uncertainty without

verifying performance is, in my opinion, foolhardy.

7. Challenge problems

To date, there have been over 10,000 expert elicitations

performed at or in collaboration with the TU Delft. These

involve 29 different expert panels covering a wide variety of

subjects including:

† Crane risk

† Propulsion of rockets

† Space debris

† Composite materials

† Groundwater transport

† Atmospheric dispersion and deposition

† Toxic materials

† Underground pipelines

† Transport of radiation in the soil/plants/animals

† Health/economic effects of radiation

† Failure of moveable water barriers

† Dike ring reliability

† Safety factors for airline pilots

† Montserrat eruption prediction

† Serviceability limit states

† NOx emissions.

(For details and references, see Refs. [7,11,14]). All of

these studies used seed variables: expert performance was

measured in terms of calibration and information, and the

performance of various combination schemes was

examined.4

In none of these elicitations were we confronted with the

bizarre situations described in the ‘challenge problems’

proposed for this workshop [23]. On the other hand, the

problems met with in practice are not recognizable in these

challenge problems. As agreed with the organizers, I will

therefore extract a few lessons learned from my experience

with expert judgment which might be of interest for this

workshop, and sketch what I see as important problems.

8. TU Delft experience

1. Experts do not mind performance measurement.5 It has

happened repeatedly that experts defended the measure-

ment of performance when the problem owners became

nervous about publishing results.

2. Experts are leery of ‘non-objective’ or psychologically

based methods, and are suspicious of the ‘academic

sandbox’.

3. Experts have no problem understanding (subjective)

probability and no problem quantifying degree of belief

in terms of quantiles of a subjective probability

distribution. For experts without formal education (e.g.

crane operators) this may require intuitive explanation.

4. Experts are not uniformly overconfident, though over-

confidence certainly does arise. As a general rule, the

more a field is based on physical measurements, the

better the experts’ performance and the more the experts

agree.

5. It is always possible to find suitable calibration variables.

If there are no measurements relevant to a given field,

then this falls outside empirical science and outside

expert judgment. The existence of god is not an issue to

be adjudicated by expert judgment.

6. In general, though not always, the performance based

combination of expert judgments performs better, in

terms of calibration and information, than an equal

weight combination and also better than the best expert

(see Ref. [11]).

4 This has not yet been done for the NOx study [9].
5 In our total experience, there have been may be three experts who

objected to performance measurement.
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Finally, I would add that experts are generally coopera-

tive and will try to conform to the elicitation format

suggested by the analyst. I suggest that reports of experts’

‘inability to give distributions’ reflects the attitude of the

analyst, not the experts.

9. Conclusions: open issues

I conclude by identifying several important open issues

involving expert judgment.

9.1. Dependence between elicition variables

We have developed techniques for eliciting dependences

based on rank correlation coefficients, and applied these

with some success in the USNRC-EU joint uncertainty

analysis of accident consequence codes for nuclear power

plants [3,8]. This is certainly not the last word on this

subject.

The importance of this issue can be illustrated with

the recent NOx study [9]. Fig. 1 shows the uncertainty in

emissions (kg/yr).

Suppose Xi is the emission the ith auto, where Xi is

normally distributed with mean 37 and standard deviation

50 (these values are representative for Benzene Without

Regulated Catalysor, though the distribution in Fig. 1 is

not normal). If the uncertainty for the autos were

‘aleatory’ then each auto’s emissions would be drawn

independently from this distribution. The uncertainty in

the total emissions of 2,040,000 benzene autos in the

Netherlands without catalysor would be the 2,040,000-

fold convolution of the distribution in Fig. 1; it would be

normal with mean 75 million and standard deviation

71,414. Hence the 5% 95% uncertainty band for the total

emission would be very narrow indeed: 74.9 and 75.1

million. The explanation is simple, the mean of the sumP
i¼1…N Xi increases with N; whereas the standard

deviation of
P

i¼1…N Xi increases with
p

N: If the

uncertainty were ‘epistemic’, then the uncertainties

would be completely correlated. The mean for

2,040,000 autos would still be 75 million, but the 90%

confidence band would be 11.4–137.1 million.

Clearly neither of these alternatives is realistic. The

approach in Ref. [9] cannot be explained here. Suffice to say

it involved ‘majorizing’ the correlation between individual

auto’s, and resulted in a 90% confidence band shown in

Fig. 2. The rank correlation between the emissions of two

randomly sampled benzene auto’s without catalysor was

0.04; for the emissions from two groups of 100 such auto’s it

was 0.57, and for two groups of 10,000 such autos it was

0.99. This sort of behavior holds quite generally. In fact, one

can show that if the uncertainty in variable Xi is the sum of

aleatory and epistemic random variables, then the variance

of
P

i¼1…N Xi is dominated by the variance of the epistemic

component and the covariance between the aleatory and

epistemic components as N gets large. In general, aleatory

and epistemic components will be correlated (for details, see

Fig. 1. Probability density function for one random auto of NOx (kg/yr) for milieu classes: no regulated catalysor, EURO1 and EURO2.
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Ref. [9]). The point is that the issue of ‘aleatory versus

epistemic’ is really an issue of dependence. Simple

solutions will only work for simple problems.

9.2. Does combination commute with model computations?

In other words, should we combine experts and then

propagate this combined distribution through a model, or

should we first propagate each expert’s distributions through

the model, and then combine. It can make a significant

difference.

Fig. 3 shows the results of propagating the (three)

experts’ distributions separately through the emissions

model, and also the results of first combining the experts

(DM before) before propagating, and combining the experts

distributions after propagating them through the model (DM

after). The combination is with equal weights. The

differences between the two DMs are significant, though

within the spread among the experts themselves.

9.3. Dependence between experts

Some recent work in this area is found in Ref. [13].

Research is needed both in ways of measuring dependence,

and ways of using this information in combining experts’

assessments. To date, there is no satisfactory proposal.

9.4. Expert judgment for models

The question is, how can expert judgment be used to

build models. In the particular case of graphical models

such as Bayesian Belief Nets, how do we effectively elicit

conditional independence relations from experts? Given

the importance of Bayesian Belief Nets in artificial

intelligence and engineering applications, it is imperative

to find ways to find ways of controlling their staggering

complexity and quantifying them with expert judgment in

a traceable way.
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