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Abstract

A vine is a new graphical model for dependent random variables. Vines gen-
eralize the Markov trees often used in modeling multivariate distributions. They
differ from Markov trees and Bayesian belief nets in that the concept of conditional
independence is weakened to allow for various forms of conditional dependence. A
general formula for the density of a vine dependent distribution is derived. This
generalizes the well-known density formula for belief nets based on the decomposi-
tion of belief nets into cliques. Furthermore, the formula allows a simple proof of
the Information Decomposition Theorem for a regular vine. The problem of (condi-
tional) sampling is discussed, and Gibbs sampling is proposed to carry out sampling
from conditional vine dependent distributions. The so-called ‘canonical vines’ built
on highest degree trees offer the most efficient structure for Gibbs sampling.
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1 Introduction

Graphical dependency models such as Markov trees, Bayesian belief net-
works and influence diagrams have become very popular in recent years.
The principal applications of these graphical models have been in problems
of Bayesian inference (Markov trees and belief nets), and to decision prob-
lems (influence diagrams). Markov trees have also been used within the
area of uncertainty analysis to build multivariate dependent distributions
(see for example [2, 14, 15, 3] and also [8, 9] for other approaches based on
the multivariate normal distribution).

Within the field of uncertainty analysis, the problem of easily specifying a
coupling between two groups of random variables is prominent. Typically,
information about marginal distributions is given, for example quantile in-
formation from experts. Elicitation of a full set of marginals and conditional
distributions is however too great a burden. The methods referenced above
all use some from of expert assessment of unconditional correlations to give
partial information about the dependence structure. The methods assume
that the distributions are members of some particular distributional class
that is parameterized by the unconditional correlations and marginal dis-
tributions. Under such an assumption the multivariate distribution is then
identified by the expert information.

The Markov tree methods described above are suitable for rapid Monte
Carlo simulation, thus reducing the computational burden of sampling from
a high dimensional distribution. The bivariate joint distributions required
to determine such a model exactly are chosen to have minimum information
with respect to the independent distribution with the same marginals, under
the conditions of having the correct marginals and the given rank correlation
specified by an expert.

However, the assumption of conditional independence required for the use of
Markov trees is rather strong and prohibits the modelling of certain common
kinds of phenomena. Similarly, the use of standard graphical models to
simplify the decomposition of the full distribution is often impossible because
the requirement of conditional independence is too strong.

In [4] and [1], we introduced the notion of a vine dependent distribution and
demonstrated the existence of such distributions. A vine is a graphical tool
that allows the conditional independence property used in Markov trees and
belief nets to be weakened. A vine allows the expert to specify conditional
rank correlations, or more generally conditional copulae, in such a way that
the information is mever inconsistent. A special case is the specification of
a multivariate normal distribution using partial correlations, generalizing
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Figure 1: A belief net, a Markov tree, and a vine

work of Joe [11].

To demonstrate the kind of problem that we want to deal with using vines,
consider three random variables X, Xo and X3 with uniform marginal dis-
tributions. We want to specify the joint distribution in a simple way. Figure
1 shows examples of (a) a belief net, (b) a Markov tree, and (c) a vine on
three elements. In the case of the belief net and the Markov tree, variables 1
and 3 are conditionally independent given variable 2. In the vine, in contrast,
they are conditionally dependent, with a conditional correlation coefficient
that depends on the value taken by variable 2. The belief net specification
is difficult to do because it entails the input of conditional distributions and
some marginals (for Figure 1 this would be two conditional distributions
and one marginal). The conditionals have to be chosen so that the remain-
ing marginals are uniform - a task that is not easy. The Markov tree and
vine models both allow the use of copulae and are better suited to building
a model with given marginals. Using the Markov tree one could specify a
rank correlation between variables 1 and 2, and between variables 2 and 3,
and use the minimum information copulae with these rank correlations (this
is discussed in greater detail below). Suppose we were to take rank corre-
lations of 0.9 in both cases. The Markov model is completely specified and
gives variables 1 and 3 a rank correlation of approximately 0.9 x 0.9 = 0.81.
However, we may not want to have this rank correlation! We may want
a different rank correlation, or indeed to have the degree of correlation of
variables 1 and 3 to depend on the value taken by variable 2. Figure 2 shows
three plots. Each shows 200 independent samples of the three variables (the
vertical lines are axes for each variable, and the lines correspond to samples).
The first plot shows a sample obtained from a Markov tree in which variables
1 and 3 are independent given variable 2. The second plot shows a sample in
which variables 1 and 3 have conditional rank correlation 1 given variable 2.
The third plot shows a sample in which variables 1 and 3 have conditional
rank correlation —1 given variable 2. Figure 3 shows three plots illustrating
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a distribution in which the conditional rank correlation of variables 1 and 3
given 2 is linearly dependent on variable 2 (the conditional rank correlation
is +1 if Xo =1 and is —1 if X3 = 0). Variables 1 and 2, and variables 2 and
3, have zero rank correlation. The first plot shows an unconditional sample.
The second plot shows a sample conditioned on a high value for variable 2.
The third plot shows a sample conditioned on a low value for variable 2.
The kind of conditional dependence structure shown in Figure 3 is difficult
to model with a Markov tree (it is not impossible as there is an existence
theorem that shows that any multivariate distribution on n variables can be
modeled by a Markov tree with n 4 1 variables - the proof is however highly
non-constructive and thus has no practical significance!).

Vines were first defined in [4]. The existence of vine dependent distributions
was demonstrated in [1], together with relative information properties, using
a more general but non-graphical construction called a Cantor tree. Rank
and partial correlation vines were studied extensively in [13], in particular in
the context of the problem of completing a positive definite matrix. While
[1] makes very weak assumptions about the underlying distributions, we
shall assume here that densities exist and concentrate on a simple subclass
of vines called regular vines.

We would like to thank Dorota Kurowicka for her helpful comments.

2 Definitions and Preliminaries

We consider continuous probability distributions ' on R” equipped with the
Borel sigma algebra B. The one-dimensional marginal distribution functions
of F are denoted F; (1 < i < n), the bivariate distribution functions are Fj;
(1 <i# j <n), and Fj; denotes the distribution of variable i conditional
on j. The same subscript conventions apply to densities f and to higher-
dimensional conditional marginals. For convenience we shall always assume
that densities (with respect to Lebesgue measure) exist.

Definition 1 (relative information)

Let f and g be probability densities on R" such that f is absolutely continuous
with respect to g (that is, g(x) = 0 implies f(x) = 0), then the relative
information or Kullback-Liebler divergence, I(f|g) of f with respect to g is

1) = [ 1og (%) flw) do

(with the convention that 0/0 = 1). When f is not absolutely continuous
with respect to g we define I(f|g) = oo.
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The principle underlying partial specification of a probability distribution
via (conditional) correlation coefficients and marginals is that the constructed
distribution should be as “independent” as possible given the correlation
constraints. Hence we will usually consider the relative information of a
multivariate distribution with respect to the unique independent multivari-
ate distribution having the same marginals.

Relative information I(f|g) can be interpreted as measuring the lack of
uniformity of f (with respect to g). The relative information is always non-
negative and equals zero if and only if f = g. See for example [12].

Definition 2 (rank or Spearman correlation)

The rank correlation r(Xy, X9) of two random wvariables X, and Xy with
joint probability distribution Fio and marginal probability distributions F
and Fy respectively, is given by

(X1, X2) = p(F1(X1), F(X2)).
Here p(U, V') denotes the ordinary product moment correlation given by
p(U, V) =cov(U,V)//var(U)var(V),

and defined to be 0 if either U orV is constant. When Z is a random vector
we can consider the conditional product moment correlation of U and V,
pz (U, V), which is simply the product moment correlation of the variables
when conditioned on Z. The conditional rank correlation of X1 and Xo
gien Z s o

Tz(Xl,XQ) = ’I"(XI,XQ),

where (X1, Xy) has the distribution of (X1, X5) conditioned on Z.

The rank-correlation has some important advantages over the ordinary product-
moment correlation:

e The rank correlation always exists,

e Independent of the marginal distributions Fy and Fy it can take any
value in the interval [—1,1] whereas the product-moment correlation
can only take values in a sub-interval I C [—1, 1] where I depends on
the marginal distributions Fx and Fy,

e It is invariant under monotone increasing transformations of X and Y.

These properties make the rank correlation a suitable measure for devel-
oping canonical methods and techniques that are independent of marginal
probability distributions.



The rank correlation is actually a measurement of the dependence of the
copula between two random variables.

Definition 3 (copula) The copula of two continuous random variables X
and Y is the joint distribution of (Fx(X), Fy(Y)).

Clearly, the copula of (X,Y) is a distribution on [0, 1]? with uniform marginals.
More generally, we call any Borel probability measure x a copula if 12([0, 1]?) =
1 and g has uniform marginals.

An example of a copula is the minimum information copula with given rank
correlation. This copula has minimum information with respect to the uni-
form distribution on the square, amongst all those copulae with the given
rank correlation. The functional form of the density and an algorithm for
approximating it arbitrarily closely are described in [16]. A second exam-
ple is the normal copula with correlation p, obtained by taking (X,Y) to be
joint normal with product moment correlation p in the definition of a copula
given above. More information about copulae can be found in [17].

Definition 4 (tree) A tree T = {N, E} is an acyclic graph, where N is
its set of nodes, and E is its set of edges (unordered pairs of nodes).

We begin by defining a tree structure that allows us to specify certain char-
acteristics of a probability distribution.

Definition 5 (bivariate tree specification)
(F,T,B) is an n-dimensional bivariate tree specification if:

1. F = (Fy,...,F,) is a vector of one-dimensional distribution functions,
2. T is a tree with nodes N = {1,...,n} and edges E

3. B ={B(i,7)|{i,j} € E}, where B(i,j) is a subset of the class of copula
distribution functions.

Definition 6 (tree dependence) 1. A multivariate probability distri-
bution G on R"™ satisfies, or realizes, a bivariate tree specification (F, T, B)
if the marginal distributions of G are F; (1 < i < n) and if for any
{i,j} € E the bivariate copula C;; of G is an element of B(i,j).

2. G has tree dependence of order M for T if {i,k1},...,{km,j} € E
implies that X; and X; are conditionally independent given any M of

ke, 1 < £ < m; and if X; and X; are independent when there are no
such k..., km (i,j € N).



3. G has Markov tree dependence for T if G has tree dependence order M
for every M > 0.

In many applications it is convenient to take B(%,j) to be the family of all
copulae with a given rank correlation. This gives a rank correlation tree
specification.

Definition 7 (rank correlation tree specification)
(F, T, t) is an n-dimensional rank correlation tree specification if:

1. F = (Fy,...,F,) is a vector of one-dimensional distribution functions,
2. T is a tree with nodes N = {1,...,n} and edges E.

3. The rank correlations of the bivariate distributions Fi;, {i,5} € E, are
speciﬁed by t = {tij|tij € [—1, 1], {Z,j} € E, ti]’ = t]’i, ti = 1}.

The following two results were proved in [15]. The first is actually a spe-
cial case of the well-known decomposition of a distribution modeled by a
Bayesian belief net given by forming cliques (see [10]). The main result
of this paper will be a generalization of this Theorem to the case of vine-
dependent distributions. For this reason we give a short proof.

Theorem 1 Let (F,T,B) be an n-dimensional bivariate tree specification
that specifies the marginal densities f;, 1 <14 < n and the bivariate densities
fij, {i,j} € E the set of edges of T. Then there is a unique density f on
R™ with marginals f1,..., fn and bivariate marginals fi; for {i,5} € E such
that f has Markov tree dependence described by T. The density f is given
by

H(i,j)eE fij(xi, ;)
[Ticn (fi(z;))dee@®=1 "

where deg(i) denotes the degree of node i; that is, the number of neighbours
of i in the tree T.

flxy,. .. ) = (1)

Sketch proof: This is by induction on the number of nodes in the tree.
For n = 1,2,3 the result is easy to show. Now assume that it holds for any
tree with less than or equal to n nodes. Take a tree with n + 1 nodes. We
can find a node (call it node n + 1) with degree 1, and thus attached by an
edge to just one other node (call it node n). Now, recalling that fi_,n41 is
just the joint density of all n 4+ 1 nodes, write

Jon+1
fl...nn—l—l = fn+1\nf1...n = n}z fln
n



and apply the formula for the subtree built from nodes 1,...,n, noting that
node n has degree in this tree exactly one less than in the larger tree. This
completes the proof. O

The following theorem states that a rank correlation tree specification is
always consistent. This gives part of the mathematical underpinning to the
strategy of eliciting correlations from experts.

Theorem 2 Let (F,T,t) be an n-dimensional rank correlation tree specifi-
cation, then there exists a joint probability distribution G realizing (F,T,t)
with G Markov tree dependent.

Proof: This follows from Theorem 1 if we can find appropriate bivariate
distributions with the given marginals and rank correlations. Such bivariate
distriubtions are given by applying the minimum information copula with
given correlation C; 5,

Theorem 2 would not hold if we replaced rank correlations with product
moment correlations in Definition 7. For arbitrary continuous and invert-
ible one-dimensional distributions and an arbitrary p € [—1, 1], there need
not exist a joint distribution having these one-dimensional distributions as
marginals with product moment correlation p.  (To see this recall that
the product moment correlation of X and Y is equal to one if and only if
Y = aX + b for some a > 0. If this holds then the distribution functions
are also related by Fy (at + b) = Fx(¢), and so X is uniform if and only if
Y is uniform. Hence when X is uniform and Y is not uniform, for example
when Y is distributed as X'°, then the product moment distribution of X
and Y must always be less than 1.)

The main result of this paper is to show that the above results can be gen-
eralized for vines. In particular, we shall show that for the vine dependent
distributions to be defined below (the class of which includes Markov tree
dependent distributions), a formula similar to that of Theorem 1 holds. The
density formula of Theorem 1 is generalized in Theorem 3 to include a prod-
uct of terms explicitly representing the dependencies specified in the vine.

3 Regular vines

In this section we recall the notion of a regular vine as defined in [1].

10



1.2 2,3 3.4 4,5

1,3]2 2,4]3 3,5/4

Figure 4: A regular vine

Tree specifications are limited by the maximal number of edges in the tree.
For trees with n nodes, there are at most n — 1 edges. This means we can
constrain at most n — 1 bivariate marginals. By comparison there are n(n —
1)/2 potentially distinct off-diagonal terms in a (rank) correlation matrix.
The regular vine provides a more general structure for partially specifying
joint distributions. For example, consider a density in three dimensions.
In addition to specifying marginals g1, g2, and g3, and rank correlations
r(X1, X2),7(Xe, X3), we also specify the conditional rank correlation of X7,
and X3 as a function of the value taken by Xs:

’)"51;2 = ’I“(Xl,X3|X2 = 5132).

For each value of Xy we can specify a conditional rank correlation in [—1, 1]
and find the minimal information conditional distribution, provided the con-
ditional marginals are not degenerate. This will be called a regular vine
specification, and will be defined presently. Sampling such distributions on
a computer is easily implemented; we simply use the minimal information
distribution under a rank correlation constraint, but with the marginals
conditional on Xg. Figures 4 and 6 show regular vine specifications on 5
variables. Figure 4 corresponds to the structure studied by Joe [11]. Each
edge of a regular vine is associated with a restriction on the bivariate or
conditional bivariate distribution shown adjacent to the edge. For exam-
ple, in Figure 4 the edge marked 1,2 is associated with a specification of

11



the bivariate distribution of variables 1 and 2. The edge marked 1,3|2 is
associated with bivariate distributions of 1 and 3 conditional on 2.
Note that the bottom level restrictions on the bivariate marginals form a

tree T7 with nodes 1,...,5. The next level forms a tree T5 whose nodes are
the edges E; of T, and so on. There is no loss of generality in assuming
that the edges E;, ¢ = 1,...,n — 1 have maximal cardinality n — 7, as we

may “remove” any edge by associating with it the vacuous restriction.

A regular vine can be used to define a class of distributions that form a
sub-class of the Cantor tree distributions defined in [1]. The Cantor tree
distributions can also be graphically represented by a more general object
called a vine. A vine is used to place constraints on a multivariate distri-
bution in a similar way to that in which directed acyclic graphs are used to
constrain multivariate distributions in the theory of Bayesian belief nets.

Definition 8 (regular vine, vine) V is a vine on n elements if
1.V =(T1,..,Ty)
2. Ty is a tree with nodes Ny = {1,...,n} and a set of edges denoted F1,

3. Forv=2,...,m, T; is a tree with nodes Ny C NJUFE,UFEsy...UFE;_;
and edge set E;.

A vine V is a regular vine on n elements if

1. m=n,

2. T; is a connected tree with edge set E; and node set N; = E;_1, with
#N;j=n—(i—1) fori=1,...,n, where #Nj is the cardinality of the
set Nj.

3. The prozimity condition holds: Fori=2,...,n—1, ifa = {a1,a2} and
b = {b1,b2} are two nodes in N; connected by an edge e € E; (recall
ai, ag, bl, by € Nz'fl); then #a Nnb=1.

The proximity condition is illustrated in Figure 5. In the situation shown
there we say that edge e is around node ag. It will be convenient to introduce
some labeling corresponding to the edges and nodes in a vine, in order to
specify the constraints. We first introduce a piece of notation to indicate
which nodes of a tree with a lower index can be reached from a particular
edge.

The edge set F; consists of edges e; € F; which are themselves unordered
pairs of nodes in N;. Since N; C Ey U Ey U Ey...U E;_1 (where we write
N; = Ej for convenience), there exist e; € E; and e, € Ey, (j,k < i) for
which

€; — {ej, ek}.

12



Figure 5: The proximity condition: an edge around a node

Definition 9 For any e; € E; the complete union of e; is the subset

Ael:{]EleE()H]_S’LIS’LQSS’LTZ’L, and €iy, EEik,(k:]_,...,’)”),
with j € e;,,e;, €¢;,  (k=1,...,7r = 1)}

We can now define the constraint sets.

Definition 10 (constraint set) Fore = {e(1),e(2)} € Ey, £ =1,...,m—
1, the conditioning set associated with e is

De = Ag1y N Ae(2)
and the conditioned sets associated with e are
Cee(1) = Ae(1) — De,  and C, o(2) = Ag2) — De.
The constraint set for V is
CV = {(Cee(1)s Cee(2): De)ll = 1,...,m —1,e € Bye = {e(1),e(2)}}.

Note that A, = Ae(l) U Ae(2) = Ce,e(l) U Ce,e(2) U D, when e = {e(1),e(2)}.
For e € E,, the conditioning set is empty.

The constraint set is shown for the regular vines in Figures 4 and 6. At
each edge e € Ey, the terms C, 1) and C, ¢(2) are separated by a comma
and given to the left of the “|” sign, while D, appears on the right. For
example, in Figure 4, the tree T5 contains just a single node labeled 1, 5|234.
This node is the only edge of the tree Ty where it joins the two (T4-)nodes
labeled 1,423 and 2,5|34. In this example the conditioned sets are always
singletons. In fact this is always the case for regular vines.

The following result is proven in [1].

Lemma 1 IfV is a reqular vine on n elements then for all ¢ =1,...,n —
1, and all e € E; the conditioned sets associated with e are singletons,

#Ce 1) = 1. Furthermore, #A. =+ 1, and #D, = £ — 1.

13



Because the conditioned sets are singletons, we shall often refer to the label
of an edge e as being i, j|D.. This is consistent with the labeling used in the
figure, and simply means that the conditioned sets for e are {i} and {j}.
We will need the following proposition.

Proposition 1 Let V be a regular vine on n elements, and k an integer
1 <k <n-—1. Given a node i in tree Ty, there are exactly deg(i) — 1 edges
in Tky1 around .

Proof: Without loss of generality we may assume that & = 1.

We show first that deg(i) — 1 is the maximal number of edges in T around
i. Clearly there are deg(i) edges joining 7 to other nodes. These are the
nodes in 75 that when joined by edges will be around 7. Because 75 has to
be a tree there can be no cycles of edges, so there are at most deg(i) — 1
different edges in 75 around s.

We now show that there are exactly deg(i) — 1 edges in Ty around 7. Note
first that any edge in 75 can only be around one node of 77 as otherwise
there would be a cycle in 77, and that by the proximity condition every edge
in T3 is around some node of T3. If some node i of T} has less than deg(i) —1
edges in T around it then we can count the total number of edges in T5 as

Z #edges around j < Z (deg(j) — 1)

JET: JeT

= | D deg(s) | —n

VISR
= 2(n—1)—n=n—2.

This contradicts the fact that T5 has n — 2 edges.O

Using a regular vine we are able to partially specify a joint distribution as
follows:

Definition 11 (regular vine specification) (F,V,B) is a regular vine
specification if

1. F = (F,...,F,) is a vector of continuous invertible distribution func-
tions.

2. V s a reqular vine on n elements

3. B = {Bc(d)]i =1,...n —1;e € E;} where B.(d) is a collection of
copulae and d is a vector of values taken by the variables in D,.

14



The idea is that given the values taken by the variables in the constraint set
De, the copula of the variables X¢, ; and X¢,, must be a member of the
specified collection of copulae.

Definition 12 (regular vine dependence) A joint distribution F' on vari-
ables X1, ..., X, is said to realize a regular vine specification (F,V, B) or
ezhibit regular vine dependence if for each e € E;, the copula of X¢, ; and
Xc, , gwen Xp, is a member of B.(Xp,), and the marginal distribution of
Xi z'sFi (’i: 1,...,n).

It is shown in [1] that, under the appropriate measurability conditions, reg-
ular vine dependent distributions can be constructed.

A convenient way to constrain the copulae in practice is to specify rank
correlations and conditional rank correlations. In this case we talk about a
rank correlation vine specification. Another way to constrain the copulae is
by specifying a partial correlation. This is discussed in [1], where it is shown
that a multivariate normal distribution can be conveniently parameterized
by a partial correlation regular vine specification. The parameters of this
specification are a set partial correlations without any algebraic relations.
The advantage of this parameterization is that one does not have to worry
about positive definiteness.

Example 1 We return to the example discussed above and illustrated by
a sample in Figure 8. This distribution is modeled by the vine shown in
Figure 1. The bivariate specification for variables X1 and Xo is that the
rank correlation should be 0, as is the specification for variables Xo and X3.
The conditional rank correlation of variables X1 and X3 given X9 is equal
to 2Xo — 1. For the simulation performed to produce Figure 3 we used the
minimum information distribution described in [1].

We now show that a formula for the density of a regular vine distribution
can be given that is analogous to, and generalizes, the expression given in
Theorem 1 for Markov trees.

Lemma 2 Let Fio(x,y) be a distribution function with topological support
By x By C R? and density fi5. Suppose that the marginal densities fi and
fo are strictly positive on By and By respectively. Let C be the copula of Fia
and c its density. Then

c(F1(x), F2(y)) =

15



Proof: The copula is the push-forward distribution of Fj5 under the trans-
formation

($7y) = (F1($)7F2(y))

The Jacobian of the transformation is fi(z)f2(y) so the formula is just an
application of the density transformation formula. O

Example 2 We begin by showing how the lemma can be applied to obtain
the density of a vine dependent distribution for the reqular vine in Figure 4.
The lemma is applied inductively to the edges of trees in reverse order, Ty,
Ts, Ty, Th. This calculation will be generalized in Theorem 3.

Ji23a5 = fi5)234 234
= 150234 (F1j2345 F5j234) f1)234 f5)234 f234

J1234 2345
= 015\234(F1|2347F5\234)7
fa3a

f1a123f23f25/34. 34
f234

= 150234 (F1)2345 Fij234)

J23f 4123 23 f2134 513434

= 015\234(F1|234aF5\234)C14|23(F1|23,F4|23)C25|34(F2\34,F5|34) Foza

J123 234345
= 15234 (F1j2345 Fsj234)C14123 (F1j23, Fujes ) cas34 (Faj3a F5|34)W

J13j2f24)3f3504f2f3.f4

= 150234 (F112345 F5j234) C1aj23 (F1123, Faj23)C25(34(Foj34, Fi34) Fosfan

= 015\234(F1|234aF5\234)C14|23(F1|23,F4|23)C25|34(F2\34,F5|34)

Tr2f32f23 43314514 2 3f4

X132 (F1j2, F312) o413 (Fy)3, Fyj3)ess)a (Fj4, Fs|a) o Fos

= 015\234(F1|234a F5\234)C14|23 (F1|23a F4|23)C25|34(F2\34a F5|34)

J12f23f34f15
X c13j2(F1)2, F312) €243 (Fap3s Fajz)essia (Faja, F5\4)W'

This is the form given in Theorem 3 below and should be compared to the
density for tree-dependent variables given in Theorem 1. The final term is
exactly what Theorem 1 gives for the first level tree Ty in the case of a Markov
dependent distribution. Indeed, our formula specializes back to Theorem 1
in this case, as it corresponds to using the independent copula everywhere,
so that the (conditional) copula density terms are all identically 1.

In the next result we assume that, for each edge e € T),, (m =1,...,n—1),
and each possible value of the variables in the conditioning set D, a copula is

16



specified. When the edge is labeled ij| D, we write the corresponding copula
as Cyjp, and its density as c;jp,. The density of this copula is denoted cq.
Furthermore, marginal distributions F; are specified for each j € N.

Theorem 3 Let V = (T1,...,T,) be a regular vine on n elements. Given
F; and Cj;p, as above there is a unique vine dependent distribution with
density given by

nl [Lijyer fis
fi.n = H H cij\De(-FﬂDe?Fj\De) XHieNl(fi)deg(z‘)q

m=2ecE,,

where e is an edge with label ij|D,.

Proof: The proof is by reverse induction on the level of the tree in the vine.
We claim that for every 2 < M <n — 1,

n—1 H fA
_ Ny : . ecEp 1 J e
fl...n = ( H H Cij| D (E|De’F]De)> X HeeNM_l(fAe)deg(e)—l'

m=M ecFE,

The inductive claim certainly holds when M = n — 1 as can be seen as
follows. Writing e = {e1, es} for the one edge in T),_1, with A,, = {i} U D,
and A, = {j} U D, we have

fi.n = fijp.fDe
= ¢ijip.(Fip.> Fjip.) % fiip.fj|p.fDe
fa., fa.,

ID.

Now since T, is a tree with two edges and three nodes, one of the nodes, k
say, must have degree two, and the edge e of T}, 1 must be around k. Hence
D, = Ag, and the claim is demonstrated.

For the inductive step, assume that the formula holds for M. We show that
it holds also for M — 1. To see this, apply first the same decomposition
as above for the marginal distribution corresponding to each edge of T;.
For e € Ejr_1 there are nodes of Njs_1, or equivalently edges of Fas_o,
that we call e(1) and e(2) such that e = {e(1),e(2)}. The decomposition
immediately gives all the claimed copula density terms, but the remaining
term built from densities f is of the following form:

= c¢ijip. (Fiip.> Fjip.) %

A A 1
H f e(l)f e(2) %

ecEpN 1 fDe HkENMfl(fAk)deg(k)il.
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In order to show that this reduces to the formula claimed for the induction
step we have to show two things. Firstly that the extra multiplicity of fa, )
terms arising because a node of Nj; 1 occurs in more than one edge of Ejs
is cancelled by []icn,, | (fa,)%e®)=1 Secondly that

H fDe — H (fAk)deg(lc)—l‘

eGE'M,1 keNM,Q

The first claim is clear, since the degree of a node is just the number of
edges it is in. Hence the multiplicity of a term f Ay I the denominator is
deg(e(7)), so that after cancellation we retain each term exactly once.

For the second claim note that if e € Ej; 1 then D, equals A for some
k € Njpr_9, and furthermore that e is around k. The claim then follows
immediately from Proposition 1.

This completes the proof.0

By applying Lemma 2 once more we can replace each term f;; by cy; jy (F;, F;) fi f;-
After cancelling terms we then obtain an alternative expression for the den-
sity.

Corollary 1 Let V = (T4,...,T,,) be a regular vine on n elements. Given
F; and Cj;p, as above there is a unique vine dependent distribution with
density given by

n—1
fiin=l . fa H H cijip. (Fip.> Fj|p.)

m=1 CEEm

where e is an edge labeled ij|D,.

We now give another example of the decomposition to show that the tree
structure can ensure a simple decomposition.

Example 3 (Canonical vine) We take the regular vine on & nodes shown
in Figure 6. Fach tree here has a node with the highest possible degree. The
node with highest degree has been chosen so that the conditioning sets are
the same everywhere in each tree, and increase as {1}, {1,2}, {1,2,3} as
we move up through the trees. Such a vine is called a canonical vine in [13].
The calculation of the density is as follows

f12345 = f45\123f123

= cy5123(Fij123: F5)123) fa)123 5123 f123
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4,512

2.3|1 3
4,5/123

13 2,41
2 1 4
3,512 1.2 1.4
1.5
2,51 5
Figure 6: Canonical regular vine
faapafiafas|i2f12
= 045\123(F4|123aF5\123)
fi23
T3z fa2f12 312 f512 f12
= cys)123(Fuj123: F5)123) 34112 (F3)12, Fajio)e3s)12 (F3)12, Fiji2) Fro3
J123f124/125
= 045\123(F4|1237F5\123)C34|12(F3|12,F4|12)C35|12(F3\12,F5|12)f72
12

= 045\123(F4|123aF5\123)C34|12(F3|12aF4|12)C35|12(F3\12aF5|12)C23\1(F2\1aF3\1) X
fop fap fop fap fop Fsn fi
fiy
= 045\123(F4|123aF5\123)C34|12(F3|12,F4|12)C35|12(F3\12,F5|12)C23\1(F2\17F3\1) X
.

><024\1(F2\1, F4|1)025|1(F2|1, F5|1)

><024\1(F2\1, F4|1)025|1(F2|1, F5|1)

Applying Lemma 2 again gives the expression of Corollary 1:

fi23as = casio3(Fapios, Fijio3)csapio (F312, Fapnz)essjio (F3)12, Fyi2) oz (Fajr, F3)1) ¥
X o)1 (Fy|1, Fyji)cosn (Fapn, Fsp ) ez (F1, Fa)eis(Fr, F3)eia(Fr, Fy)eys (F1, Fs) X

X f1fof3fafs.

Careful study of this expression shows that we can write the “standard”
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decomposition of the joint density,

J12345 = f1 X fo1 X f321 X fapz21 X [5)4321

by
fi = fi
fonr = caf
f3|21 = 023|1013f3
faza1 = c3q12Coq1C14[4
fs1a321 = Ca5123¢3512C25)1C15.f5-

No such simple expression exists for the standard vine.

4 Relative information of Markov Tree Dependent
Distributions

From Theorem 1 it follows by a straightforward calculation that for the
Markov tree dependent density g given by the theorem,

g [L )= D I(filfif) - (2)

1EN {i,j}eE

If the bivariate tree specification does not completely determine the bivari-
ate marginals f;;,{i,7} € E, then more than one Markov tree dependent
realization may be possible. In this case Equation 2 shows that relative
information with respect to the product distribution [[;c 5 fi is minimized,
within the class of Markov tree dependent realizations, by minimizing each
bivariate relative information I(f;;|fif;),{i,j} € E.

Markov tree dependent distributions are optimal realizations of bivariate
tree specifications in the sense of minimizing relative information with re-
spect to the independent distribution with the same marginals. In other
words, a minimal information realization of a (consistent) bivariate tree
specification has Markov tree dependence. This follows from a very general
result, proven in [4, 1], stating that relative minimum information distri-
butions (relative to independent distributions), subject to a marginal con-
straint on a subset of variables, have a conditional independence property
given that subset:

Theorem 4 Assume that gxy is a probability density with marginals fx

and fy that uniquely minimizes I(gxy|fx fy) within the class of distri-
butions B(X,Y) Assume similarly that gx,z is a probability density with
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marginals fx and fz that uniquely minimizes I(gx, z|fx fz) within the class
of distributions B(X, Z). Then gx v,z := gxgy|x9z|x is the unique probabil-
ity density with marginals fx, fy and fz that minimizes I(9x,v.z|fx fv fz)
with marginals gxy and gx,z constrained to be members of B(X,Y) and
B(X, Z) respectively.

Corollary 2 Let (F,T,B) be a bivariate tree specification. For each

(i,7) € E, let there be a unique density g(x;,x;) which has minimum in-
formation relative to the product measure f;f; under the constraint B(i,j).
Then the unique density with minimum information relative to the product
density [ [;cy fi under constraints B(i,5),{i, j} € E is obtained by taking the
unique Markov tree dependent distribution with bivariate marginals g(x;, x;),
for each {i,j} € E.

For regular vines it is possible to compute a useful expression for the infor-
mation of a distribution in terms of the information of lower dimensional
distributions. This Information Decomposition Theorem was already given
for the more general case of a Cantor tree dependent distribution in [1], but
with the result of Theorem 3 we can give a much simpler proof for the reg-
ular vine case. In the proof we use the notation z to denote the full vector
(x1,...,zy), and z 4 to denote the subvector of those z; with an index in A.

Theorem 5 (Information Decomposition Theorem) LetV = (T1,...,T},)
be a reqular vine on n elements. For the unique vine dependent distribution
with density given by

n—1

fiin=l.fa H H cijip. (Fip.> Fj|p.)

m=1e€F,

where e is an edge labeled ij|D, the relative information of fi. , with respect
to the independent distribution with the same marginals is

n—1
I(finlfi. fo) = Z Z EDEI(Cij\De)a
m=1eckE,,

where I(c) is the information of a copula with respect to the independent
copula, and Ep_ denotes the expectation taken over the values of the variables
mn De.

Proof:
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We start with the form of the density given in Corollary 1, namely

n—1

fl n_fl H H Cz]\De z\Dea ]|De)

m=1e€FE

Hence

Fron(z)
tog <f1 D Fuln)

= Z /log Cz]|De Z|D8’Fj‘Dg))f1..,nd§

m=1e€FEny

n—1
- Z Z /log Cij|De F|De7 j|De Nfa. dzy,

m=1ecE,,

n—1
= Z Z /log ¢ij|\p. (Fip.> Fj ) fi,jipe fD. dZ 4,

m=1ecKE,,

3\

,_.

n—1

|
R

Z Ep, (log(cmD8 (u,v)ci,j‘D8 (u,v) dudv)
lecE,

n—1
= Z Ep, (I(cijip.))

m=1 CEEm

m

a

As an example consider the regular vine shown in Figure 4. We have,

I(fi23a51f1--- f5) = I(fi2lfif2) + I(faslfafs) + I(f3alf3fa) + I(fas|faf5) +
B I(f132] f112f312) + B3 L (foa31f23f4i3) + Eal(f35)4] f314f54) +
o3 I(f1,4123] f1123f5/23) + Esa I(f2,5/34] fo[34f5)34) +
Eo34 I(f1 50234 f1)234f50234)

This expression shows that if we take a minimal information copula satis-
fying each of the (local) constraints, then the resulting joint distribution is
also minimally informative.

Theorem 6 Let f be a Borel probability measure on R" satisfying the requ-
lar vine specification (F,V, B), and suppose that for each e € E,,, with label
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ij|De and for each value taken by the variables in De, c;jp, is a copula
density minimizing

I(Ci,j\De) (3)
within the class of allowed copulae. Then f satisfies (F,V, B) and minimizes

n

I(ITT - (4)

=1

Furthermore, if any of the c; jp, uniquely minimizes the information term
in Ezpression 3 (for all values d of D.), then f uniquely minimizes the
information term in Ezpression 4.

This result motivates the use of the bivariate minimum information distri-
bution with given rank correlation.

5 Sampling and conditional sampling from vine
distributions

Sampling from a regular vine distribution can be done in a straightforward
way. We illustrate with the example in Figure 4.

e Sample first X; according to the distribution function F;.
e From (49, F; and F5 determine FQH and sample X5 given X;.

e From (s, F; and F5 determine F1|2. From Cbs3, F5 and F3 determine
F3‘2. From Cl3|27 F1|2 and F3‘2 determine F3|12 and Sample X3 given
X1 and X2.

e From (34, F3 and Fy determine Fy3. From Cy3, F5 and F3 determine
Fy3. From Cyyj3, Fy3 and Fyj3 determine Fjyjp3. From C3p2, Fyp and
F3‘2 determine F1‘23. From C14‘23, F1‘23 and F4‘23 determine F4|123 and
sample X, given X, X5 and Xs.

This sampling procedure is quite good when the full distribution is to be sam-
pled. If we want to sample from the conditional distribution of Xs,..., X,
given X; then we can follow the same procedure, just fixing X; at the con-
ditioned value. A similar procedure will work when conditioning on other
X; as it is quite easy to adjust the above procedure to start with any X;.

When we want to sample from a conditional distribution with more than one
conditioned variable the above strategy cannot be applied. An alternative
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is to use the Gibbs sampler. This is possible since we have an explicit form
for the density function. The only problem in computing the density is that
some conditional distribution functions appear in the density function and
these have to be recomputed. The highest degree vine seems to be the most
convenient vine for this purpose since the number of conditional distribution
functions that have to be computed is often small (largest when variable X;
has been updated and smallest when variable X,, has been updated).
Recall that Gibbs sampling (for a thorough review in the context of Markov
Chain Monte Carlo methods see [6]) works by sampling from the conditional
distributions in order. An arbitrary starting vector (zi,...,z,) is chosen.
Then we sample

e X; from the conditional distribution Fyjy _,(;;72,...,25). Call this
(1)

sampled value ;.

e X, from the conditional distribution F2|13...n(';$51)7$37 .oy y). Call

(1)

this sampled value 5.

),.(1)

e X3 from the conditional distribution F3|124mn(-;:1:§1 Ty, Thy.-oy Tn).

(1)

Call this sampled value x5 .

e X, from the conditional distribution F,; (- xgl)xél), e ,xg_)l). Call

(1)

this sampled value z;,’.

(1)

This sampling procedure gives us a new vector (zy/,... ,:13%1)). Clearly, the
process for generating a new vector depends only on the previous vector.
This means that we can view it as a discrete time Markov chain. Further-
more, since we have used the conditional distributions of Fj_, it is clear
that Fy_,, is a stationary distribution for the Markov process. Hence, if the
Markov process is uniquely ergodic then F}_,, is the only stationary distri-
bution, and from the general theory of continuous state Markov chains (see
for example [5]) we can conclude that the distribution of the state of the
chain will converge to F}.., independently of the starting point.

Note that for conditional sampling we can apply the essentially the same
procedure but with the conditioned variables held fixed.

In order to apply the Gibbs sampling method we need to show that the
underlying Markov chain is uniquely ergodic. In [7] this was shown for
the discrete case. In our situation however we are dealing with continuous
random variables. For typical applications within uncertainty analysis we
make use of marginal distributions elicited by expert judgement and rank
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correlations also given by experts. We are therefore particularly interested
in this case.

From now on we assume that each variable X; has compact support, that is,
there is a compact interval I; with full F; probability and f;(z;) > 0 for all
x; € I;. A simple condition for the unique ergodicity of the Markov chain is
that the density function is strictly positive on the product I; X ... X I,,.

Theorem 7 LetV be a rank-correlation vine specification. Suppose that the
(conditional) rank correlations are uniformly bounded from —1 and +1, that
is, there is a number « such that for all (conditional) rank correlations p we
have

“-1l<—a<p<La<l

Suppose also that all marginals F; have support and positive density on
compact intervals I;. Then for the minimum information distribution with
the given marginals and (conditional) rank correlation coefficients the Gibbs
sampler is uniquely ergodic.

Proof: In [16] an expression is given for the density of the minimum infor-
mation copula with given rank correlation. It is shown to take the form

(1w, 0) (v, 0) exp (6 — %)(v - %))

where 0 = 6(p) is a continuous monotone increasing function of the corre-
lation coefficient. The function & is strictly positive and is continuous as a
function of # (and thus also of 7). Therefore, since the rank correlations are
uniformly bounded away from —1 and +1, the densities of the corresponding
copulae are uniformly bounded from 0. Hence there are numbers m > 0 and
M > 0 such that

m < fZ(Il) < M for all z; € I,

and
m < c(u,v) < M for all (u,v) € [0,1]?, and all (conditional) copulae c.
Using the density decomposition formula we then have
mP < fi.n < MF,
for some k£ > 0. For the conditional density fi2.n, = f1..n/f2..n We get,

mF M*
E < f1)2..m < Py
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The same estimate holds for the other one-dimensional conditionals. This
proves the theorem O

We should remark that although the uniquely ergodic Markov chain always
converges geometrically fast to the stationary distribution, it may still con-
verge slowly in practice.

5.1 Conclusions

Regular vines give a simple way of specifying conditionally dependent ran-
dom variables. The rank correlation vine specification is a particular case
giving a highly convenient parameterization of a multivariate distribution.
In particular, after specifying the marginal distributions, an expert specifies

such a distribution by specifying numbers in [—1,1] which needn’t

n
2
satisfy any additional constraint.

We have shown that there is a density decomposition formula that general-
izes the density decomposition for a Bayesian belief net using cliques. Using
this density formula it is easy to derive the information decomposition the-
orem for regular vines.

Gibbs sampling appears to be a good way of sampling from unconditional
and conditional vine distributions. In practical cases of rank correlation
vines specified by expert assessment, simple conditions allowing the Gibbs
sampler to be used will be in force.
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