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Abstract 

Recent events in the financial and insurance markets, as well as the looming challenges of a 

globally changing climate point to the need to re-think the ways in which we measure and manage 

catastrophic and dependent risks. Management can only be as good as our measurement tools. To that 

end, this paper outlines detection, measurement, and analysis strategies for fat-tailed risks, tail dependent 

risks, and risks characterized by micro-correlations. A simple model of insurance demand and supply is 

used to illustrate the difficulties in insuring risks characterized by these phenomena. Policy implications 

are discussed. 
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The Unholy Trinity: Fat Tails, Tail Dependence,  

and Micro-Correlations 

Carolyn Kousky and Roger M. Cooke  

1. Introduction 

Managing potential losses is critical to the property insurance company writing 

homeowners policies, the bank underwriting mortgages, the stock market investor, and the 

federal government setting rates for the National Flood Insurance Program. If losses are 

independent and never terribly severe, managers can draw on traditional diversification 

strategies. It doesn’t take the Great Depression or Hurricane Katrina, however, to realize that 

losses are often catastrophic and dependent; our work focuses on these types of risks, which pose 

unique challenges to risk managers. 

In particular, we examine fat tails, tail dependence, and micro-correlations—an ―unholy 

trinity‖ of risk management perils. These are distinct aspects of loss distributions, such as 

damages from a disaster or insurance claims. With fat-tailed losses, the probability declines 

slowly, relative to the severity of the loss. Tail dependence is the propensity of dependence to 

concentrate in the tails, such that severe losses are more likely to happen together. Micro-

correlations are negligible correlations between risks which may be individually harmless, but 

very dangerous when aggregated. These three phenomena—types of catastrophic and dependent 

risks—undermine traditional approaches to risk management.  

At the heart of much risk management is aggregation. Firms hold not one insurance 

policy, or one mortgage, but a portfolio of investments. Holding such bundles offers 

diversification benefits and stabilizes losses. As we will show here, however, this traditional 

approach for managing risks can fail when loss distributions are characterized by fat tails, tail 

dependence, or micro-correlations. If one does not know how to detect these phenomena, it is not 

possible to manage them, such that firms may unwittingly court insolvency and the government 

may be exposed to losses of which they are unaware. 

                                                 
 Kousky is a fellow at Resources for the Future and Cooke is Chauncey Starr Senior Fellow at Resources for the 

Future. Address correspondence to: Carolyn Kousky, Resources for the Future, 1616 P Street, NW, Washington, DC 

20036. Email: kousky@rff.org. We would like to thank Mark Heising, Liz Simons, and the Simons Foundation for 

making this work possible.   
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While these phenomena could describe a range of risks, in this paper we focus on 

damages from natural disasters. We use three datasets to show the existence of the unholy trinity 

in disaster damages and to develop methods for their detection, measurement, and analysis. We 

then illustrate the challenges for insuring these types of risks with a simple model of the demand 

and supply of insurance. The datasets include: flood insurance claims data from the National 

Flood Insurance Program (NFIP), crop insurance indemnities paid data from the United States 

Department of Agriculture’s Risk Management Agency,
1
 and the SHELDUS database, 

maintained by the Hazards and Vulnerability Research Group at the University of South 

Carolina,
2
 which has county-level damages and fatalities from weather events.  

The next three sections of the paper describe sequentially the three phenomena of fat 

tails, tail dependence, and micro-correlations, providing examples of their importance. We use 

the above mentioned datasets to develop techniques for measuring and analyzing these three 

types of risks. Section 5 then presents a model of the demand and supply of insurance for 

catastrophic and dependent risks, demonstrating the pitfalls of insuring distributions 

characterized by the unholy trinity. Policy implications and potential remedies are discussed. 

2. Fat Tails 

Fat tails were introduced in mathematical finance in 1963 by Benoit Mandelbrot to 

describe cotton price changes (Mandelbrot 1963). Since then, evidence has accumulated that 

many types of damages, from financial losses to natural disasters, are best characterized by 

distributions with fat tails (e.g., Mandelbrot 2004; Malamud and Turcotte 2006; Latchman, 

Morgan and Aspinall 2008). The uncertainty surrounding climate change impacts may also 

generate fat tails, as in Weitzman’s (2008) analysis, where updating a non-informative prior 

yields a fat-tailed posterior damage distribution. The precise mathematical definition of tail 

obesity is rather subtle (Resnick 2007), but a working notion is that damage variable X  has a fat 

tail if, for sufficiently large values x, the probability that X exceeds x is kx
-

, for some constants 

,k > 0. The variable α is referred to as the tail index or tail parameter.  

                                                 
1 We would like to thank Ed Pasterick and Tim Scoville for providing the NFIP data and Barbara Carter for 

providing the crop data. 

2 Information on SHELDUS is available online: http://webra.cas.sc.edu/hvri/products/SHELDUS.aspx. The damage 

and fatality estimates in SHELDUS are minimum estimates as the approach to compiling the data always takes the 

most conservative estimates (for further discussion, see: Cutter, Gall and Emrich 2008).  

http://webra.cas.sc.edu/hvri/products/sheldus.aspx
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From this definition, it is clear that there are degrees of tail fatness. The m-th moment is 

infinite if m  . If α  1, we say the tail is ―Super Fat‖ and the mean or first moment is infinite. 

Of course, on N samples from such a distribution, the average of the N sample values will be 

finite, but it increases with N. ―Really Fat‖ tails, with 1 <   2, have a defined mean, but an 

infinite variance. The sample mean for these distributions also has infinite variance no matter 

how many samples are drawn.  

 When either the mean or the variance is infinite, two types of problems emerge for risk 

managers: (1) historical data will be a poor guide for the future, and (2) the tails of aggregations 

are also fat. To illustrate (1), suppose an insurance company wishes to assess the risk of flood 

damage to property in Dade County, Florida. They might look to the historical record and tally 

the total claims divided by the total value insured or the total number of policies. Any such 

method presumes that the historical average gives a good estimate of the risk. If the loss 

distribution is really fat, however, they must contend with the fact that the historical average 

itself has infinite variance, no matter how many years are averaged, and will thus not be stable. 

For problem (2), consider that a (re-)insurer may traditionally diversify his risk by combining 

insurance policies from multiple geographic locaitons. If the losses per area per year are drawn 

independently from a loss distribution with finite variance, then the sum of many such losses will 

tend to be normal, and thus thin-tailed, according to the central limit theorem. However, if the 

loss distributions have infinite variance, then the central limit theorem does not apply; instead the 

sums converge to a stable law which has the same tail behavior as the summands. Aggregation 

does not yield thinner tails. We will elaborate further on these points below.  

Measuring tail obesity in loss distributions presents challenges. The best-known approach 

is the Hill estimator for estimating the tail parameter, α, of a Pareto distributed variable, X, or any 

variable whose tail beyond some threshold xk follows a Pareto distribution. If Xi…Xn are 

independent versions of X, the Hill estimator based on xk from a sample {x1,…xn} is the 

maximum-likelihood estimator of 1/α given by (see: Resnick 2007): 

 

(1)    (∑i; xi > xk log(xi) – log(xk)) / #[i | xi > xk]. 

 

This works well if the data are indeed drawn from a Pareto distribution. If the data are not 

Pareto, but still fat-tailed, the behavior of the Hill estimator is notoriously unstable for large 

thresholds (Brielant et al. 2005; Resnick 2007), rendering its use in practical risk management 

problematic. This is seen when using the Hill estimator on property damage data for all natural 
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hazards in the United States over the years 1960 to 2007. Damages are from the SHELDUS 

database in constant 2007 dollars. Figure 1 shows a Hill plot of this data. The tail index 

estimated from the top n order statistics is plotted against n (order 0 is the largest). Is this tail 

Super Fat or only Really Fat? This Hill index is inconclusive. Bierlant et al. (2005) review 

attempts to improve the Hill estimator. 

Figure 1: Hill plot for US property damages from natural disasters 

 

 

Another diagnostic of tail obesity are mean excess plots. If variable X has cumulative 

distribution function F then the mean excess curve for X is defined as: 

 

(2)  G(x0) = E(X-x0 | X > x0).                        

 

It is well known that the mean excess curve for the Pareto distribution is linear, G(x0) = 

(x0+k)/(α–1) (McNiel, Frey and Embrechts 2005). Note that G(x0) is not defined for α=1. For a 

finite ordered sample, x1 < x2 ,…< xn, the sample mean excess plot gives the values: 

 

(3)  {xi , g(xi)};  g(xi) =  j = i,...n-1 (xj+1-xi)/(n-i); i = 1,…n-1; g(xn) = 0. 
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Evidently for any constant c, g(cxi) = cg(xi); it is therefore convenient to standardize such plots 

by dividing all xi’s by the largest, so that  xn=1 (g is also invariant under shifts of location, but 

these are not considered here).  

Whereas the theoretical mean excess curve for a Pareto variable is a straight line, the 

empirical mean excess plot is not. Figure 2 shows standardized, sample mean excess plots for 

Super Fat, Really Fat, and Meso-Fat (infinite third moment) Paretos, where the xi’s are obtained 

by inverting uniformly spaced percentiles:  

 

(4)  Pr{X > xj} = (1+xj)
-

 = 1 – j / 1001; j = 1,…1000.               

 

Evidently, these plots are not linear. For instance, a Pareto with tail index of 2 does not have a 

sample mean excess plot that is linear with slope 1 as the mean excess curve would be (middle 

plot in Figure 2). The mean excess curve for a Pareto with a tail index of 1 has infinite slope, but 

of course the sample mean excess plot will not (far right plot of Figure 2). Figure 2 quickly 

disabuses us of the idea that tail obesity can be measured by eyeballing a sample mean excess 

plot. 

Figure 2: Standardized mean excess plots for inverse percentiles of Pareto variables, 
with tail index α =3 (left), 2 (center), 1 (right) 

 

We’ve noted that whether a tail has infinite variance is of key concern for risk managers 

as this determines whether the tail will thin under aggregation. As such, a simple diagnostic for 

whether data comes from a distribution with infinite variance would be useful. Drawing on the 

behavior of sums of fat-tailed variables, we propose looking at the speed of collapse of the mean 

excess plot as variables are aggregated. Suppose we draw 5,000 samples from a Pareto 
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distribution with tail index  = 1. The slope of the theoretical mean excess plot is infinite, but the 

sample mean excess plot will look like a noisy version of the right-most plot in Figure 2. 

Suppose we now form random groups of ten distinct samples and sum the samples in each group. 

We call this operation ―aggregation by 10‖. Since independent sums of these variables converge 

to a stable law with the same tail index (Resnick 2007), we might expect that the mean excess of 

the aggregation by 10 should resemble the original mean excess. Indeed it does. Figure 3 

compares this standardized mean excess plot for =1 with aggregations by 10 and by 50, for 

Paretos with tail index =1,2,3, and also exponential variables. Sums of independent 

exponentials converge quickly to a normal with descending mean excess plot; indeed for 

aggregation by 50, the aggregands’ values are less disperse. Index =2 is the highest index with 

infinite variance. Of course the finite sample has finite variance and aggregation by 50 produces 

a descending mean excess plot. For =3, aggregation by 10 largely eliminates the positive slope.  

Figure 3: Standardized mean excess plots, with aggregations by 10 and 50, for Pareto 

distributions with = 1,2, 3 and for the exponential distribution 
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This same approach can be used to examine the tail behavior of actual loss data. We look 

at crop indemnities paid per county and National Flood Insurance Program claims by county for 

the years 1980 to 2006. Over this time period, there has been substantial growth in exposure to 

flood risk, particularly in coastal counties. To remove the effect of growing exposure, we divide 

the claims by personal income estimates from the Bureau of Economic Accounts (BEA).
3
 Thus, 

we study flood claims per dollar income, by county and year.
4
 The crop loss claims are not 

exposure adjusted, as a proxy for exposure is not obvious, and exposure growth is less of a 

concern.  

Figure 4: Mean excess plots for US crop loss (above)  
and exposure corrected flood claims (below) 

 

Note: The vertical axis gives mean excess loss, given loss at least as large as the horizontal axis. The upper right 

picture shows crop payment mean excess for random aggregations of 10 counties. The lower right picture shows 

flood claims mean excess for random aggregations of 50 counties. 

 

                                                 
3 Income data was not avilable for Guam, Puerto Rico, or St. Croix, so these are dropped from our dataset. Further, 

the income data for some counties in Virigina was for aggregations of counties. These are also dropped as they 

cannot match cleanly with our flood claims data. 

4 This arguably may not be the most appropriate normalization. The purchase of flood policies has grown over time, 

for instance, and this is not accounted for here. The mean excess plot for inflation-adjusted claims paid divided by 

the number of claims in each county, however, shows a similar mean excess plot to the one in Figure 4. 
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Figure 4 shows each county-year as a realization of a single random variable. The left 

graphs depict mean excess plots for crop (above) and exposure adjusted flood insurance claims 

(below). This data is not standardized, and the unit slope lines have been added. Whereas the 

sample mean excess plot for crop payments suggests a slope less than 1, the sample mean excess 

plot for flood claims suggests an infinite variance. The mean excess plot of a random aggregation 

by 10 for crop losses in Figure 4 (upper right) shows a decreasing slope. Compare this with 

Figure 4 (lower right) showing the mean excess of a random aggregation by 50 of exposure 

adjusted flood losses. Here, aggregation does not thin the tail significantly; the mean excess plot 

is self similar. The same picture emerges in when looking again at the SHELDUS data for all 

natural disasters in the U.S. (Figure 5).  

Figure 5: Self similarity under aggregation of US property damage mean excess plots 

 

Figures 4 and 5 suggest that the behavior of loss data under random aggregation gives 

valuable insight into tail obesity. In particular, the speed with which the mean excess curve 

collapses under random aggregation appears to be a useful indicator of whether the data come 

from a distribution with infinite variance—the most critical information for risk managers. 

Unlike the Hill estimator, this indicator is not an estimate of behavior at infinity, but depends 

only on the finite sample we have before us, making it much more useful in practice. Moreover, 

it is not an estimate of a parameter in a theoretical model of the data, but a feature of the data 

itself.  

While these tools are useful, applying them to appropriately corrected exposure data is 

critical. Risk is damage per unit exposure. Naïve examinations of risk will ignore exposure, but 

changes in exposure can alter risk assessments, sometimes fundamentally. As a simple 

illustration, Figure 6 shows the mean excess plot of deaths per county-year from natural disasters 
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in the US from 1995-2007.
5
  For each point x on the horizontal axis, the plot shows the expected 

excess number of fatalities in county-years having at least x fatalities. The left hand curve is very 

steep, indicating a very fat-tailed distribution. Does this mean that the physical impacts from 

disasters are fat tailed, or that our population concentrations in harm’s way lead to fat-tailed 

damages? The graph on the right shows the same data, but now the fatalities per county are 

divided by the population of the county. It is a different dimensioning of risk and shows a very 

different result. Whereas the risk per county is very fat tailed, the risk per person is not. The high 

damages are coming from disasters which hit high population areas, not from the disaster 

intensity as such. Which figure is most appropriate depends on our risk management problem.  

Figure 6: Mean excess plots of fatalities per county-year,  
with (right) and without (left) correction for population 

 

3. Tail Dependence 

Tail dependence refers to the tendency of dependence between two random variables to 

concentrate in the extreme values. For loss distributions, we are interested in dependence of non-

negative variables concentrating in the extreme high values, or upper tail dependent (UTD). 

Upper tail dependence of variables X and Y is defined as the limit (if it exists) of the probability 

that X exceeds its r-percentile, given that Y exceeds its r-percentile, as r goes to 100. 

Hurricane Katrina vividly demonstrated tail dependence across damage types and 

insurance lines. The storm not only caused wind and rain damage, but damage from breached 

levees and storm surge, power outages, fires that could not be put out, business interruptions, 

                                                 
5 This data is from SHELDUS and does not include fatality estimates from Katrina. Other estimates seem to be 

underestimates of deaths reported in other sources. The data is used here merely for purposes of illustration. 
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toxic spills, a rise in energy costs from damage to rigs and refineries, and increased costs of 

reconstruction (this latter effect is referred to as ―demand surge,‖ see: Hallegatte, Boissonnade, 

Schlumberger et al. 2008). After Katrina, some lines of insurance that had not been heavily hit in 

other catastrophes saw many claims; among them cargo, inland marine and recreational 

watercraft, floating casinos, onshore energy, automobile, worker’s comp, health, and life 

insurance (RMS 2005), demonstrating the tail dependence across these lines of business. The 

9/11 terrorist attacks also demonstrated that for extreme events, multiple lines become affected 

(Riker 2004). When these tail dependencies are not considered, the tail exposure of an insurance 

company can be severely underestimated. 

If X and Y are independent, their tail dependence is zero. If their tail dependence is 

positive, then when one variable takes on an extreme value, it is more likely the other variable 

will as well. Note that UTD does not depend on the marginal distributions of X and Y; if we 

apply any 1-to-1 transformation to X, say X* = X
1/N

, N 
 ℕ, X > 0 (which will thin X’s tail), then 

UTD(X*,Y) = UTD(X,Y). UTD has no simple relation to the standard Pearson correlation 

coefficient. For example, normal variables with any correlation ρ strictly between -1 and 1, have 

zero tail dependence (McNiel, et al. 2005). 

Tail dependence can be seen in loss data. Wind damage and water damage are insured 

separately in the United States. The former is covered under homeowners policies or state wind 

pools and the latter is covered by the federal National Flood Insurance Program (NFIP). Flood 

damage and wind damage are often independent; a rising river does not necessarily mean terrible 

winds and a storm with high winds may not have enough rain to cause flood damage. A severe 

hurricane, however, causes both. This suggests that wind and water insurance payments may be 

tail dependent in a hurricane-prone state such as Florida. Figure 7 shows this is indeed the case. 

Wind payments from the state insurer Citizens Property Insurance Corporation were grouped by 

county and month for the years 2002–2006, as were NFIP flood claims (all are in constant 2007 

dollars). Each damage dataset was ranked, with the highest rank standardized to 1, and the ranks 

plotted against each other. The abundance of points in the upper right quadrant of Figure 7 shows 

that high flood damages and high wind claims occur together, indicative of tail dependence.  
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Figure 7: Tail Dependence in Wind and Water Claims, Florida 2002–2006 

 

Note: Points of zero damages were removed, so rank axes do not begin at zero. 

The joint distribution of the percentiles of two random variables is called a ―copula,‖ and 

tail dependence is a property of the copula (for more information on copulae, see: Genest and 

MacKay 1986; Nelson 1999; Embrechts 2007). Copulae are useful tools for studying high 

dimensional multivariate distributions, as they allow us to separate the representation of 

dependence from the representation of the univariate marginal distributions (Kurowicka and 

Cooke 2006). Different marginal distributions can be combined in different dependence 

structures by choosing different copulae. The fact that tail dependence is a property of the copula 

immediately shows that there is no general relation between fat tails and tail dependence. These 

are separate issues. Current research focuses on the relation between tail dependence and 

multivariate extreme value copulae (Chavez-Demoulin, Embrechts and Nešlehová 2005; Joe, Li 

and Nikoloulopoulos 2008). 

Under certain conditions, tail dependence can grow as variables are aggregated. If the 

random variables are thought to be insurance policies, this ballooning of tail dependence will 

again put limits on diversification. As one simple example, consider a basic model of 

dependence in which a set of random variables X1…..Xn are symmetrically correlated with a 

―latent variable.‖ The degree of correlation between the variables will then depend on the chosen 

copula. If a tail independent copula is chosen, such as the normal copula, aggregation will not 
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increase tail dependence. If a weakly tail dependent copula is chosen, however, then the tail 

dependence can balloon upon aggregation.  

One version of this is called the ―Lp symmetric process,‖ which is widely used in 

reservoir management, maintenance optimization, and deterioration modeling (van Noortwijk 

1996). In this case, the latent variable is the scale factor, and the Xi’s are conditionally 

independent gamma transform variables characterized by a fixed shape and a scale factor which 

is uncertain. Given a scale value, the variables are independent, but lack of knowledge of the 

scale factor induces a global correlation between the Xi’s. In the simple case of conditionally 

independent exponentials with gamma distributed scale factor with shape , the unconditional 

distribution of each Xi is Pareto. Any two of the Xi’s have Pearson correlation:  

 

(5)  .,2;
1

)( jixx ji  

 

If we consider distinct sums of N such variables, they have upper tail dependence given 

by (Kousky and Cooke 2009): 

 

(6)  
, 0... 1

0... 1

1
( ) / ([ ( ) ! !]

2
;

( ) / [ ! ( )]

j k

k j N

k N

k j k j

k k
 

 

which grows with N. This model is interesting because it is widely applied and it is one of the 

few in which we can actually compute all relevant quantities. We can see tail dependence 

emerging from summing familiar random variables.  

In general, computations of sums of tail dependent variables are intractable; simulation, 

however, is rather easy. We choose the correlation (Xi, Latent) = 0.1; the correlation between Xi 

and Xj will depend on the copula chosen to realize this correlation, but will be on the order of 

0.01. Figure 8 shows four percentile scatter plots using a Gumbel copula having weak upper tail 

dependence. Figure 8a is simply between X1 and X2, and the correlation 0.02 is imperceptible. 

Figure 8b shows the scatter plot of distinct sums of 10 variables. The correlation between them 

of 0.14 is scarcely visible, but we do see some darkening of the upper right corner. In Figure 8c 
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and 8d we see the scatter plots of sums of 20 and 40 variables respectively. Now the upper tail 

dependence becomes quite evident.  

Figure 8: Tail dependence, Gumbel copula 

(a) X1  X2 : Gumbel;  = 0.02       (b) Σ
10 

Xi  Σ
10 

Xj: Gumbel;  = 0.14 

 

(c) Σ
20 

Xi  Σ
20 

Xj: Gumbel;  = 0.25    (d) Σ
40 

Xi  Σ
40 

Xj: Gumbel;  = 0.40 

 

 

To illustrate how the aggregate tail dependence depends on the copula, Figure 9 shows 

the same model as in Figure 8, but with the elliptical copula
6
 in 9a and the Normal copula in 9b. 

In both of these, there is no discernable tail dependence. 

 

                                                 
6 The elliptical copula concentrates on an elliptical surface to induce the required correlation, see Kurowicka and 

Cooke (2006). It is of interest mainly because it is analytically tractable, is related to the normal copula, yet has 

markedly different properties.  
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Figure 9: Elliptical and Normal copulae, no tail dependence 

(a) Σ
40 

Xi  Σ
40 

Xj: Elliptical;  = 0.40        (b) Σ
40 

X  , Σ
40 

Xj: Normal;  = 0.31 

 

Figures 8 and 9 suggest that the way to detect tail dependence is to look at disjunct sums, 

as we saw earlier with measures for tail obesity of damage data. Initial work with monthly, 

county-level NFIP claims data in the state of Florida suggests this approach can be a useful 

detection method. If we consider two random groups of five different counties, and make a 

scatter plot of the percentiles of their monthly losses, the left plot of Figure 10 emerges. The 

points along the axes correspond to months in which no losses were reported in these counties. 

We may discern a weak tendency for points to cluster in the upper right corner. This tendency 

grows appreciably stronger if we take two random groups of 30 different counties, as in the right 

plot.  

Figure 10: Percentile scatter plots of random aggregations of 5 (left) and 30 (right)  
Florida counties, monthly flood losses 
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4. Micro-Correlations  

Micro-correlations are correlations between variables at or beneath the limit of detection. 

The difficulty with micro-correlations is that they could so easily go undetected. One might not 

readily assume that fires in Australia and floods in California are correlated, for example, but El 

Niño events induce exactly this coupling. These tiny correlations are amplified by aggregation, 

undermining common diversification strategies.  

The ballooning under aggregation is illustrated by a very simple formula that should be 

on the first page of every insurance text book, but isn’t. Let X1,...XN and Y1, …YN be two sets of 

random variables with the same average variance 
2
 and average covariance C (within and 

between sets). The correlation of the sums of the X’s and the sum of the Y’s is easily found to be: 

 

(7) 
CNNN

CN
YX ii

)1(
),(

2

2

.  

 

This evidently goes to 1 as N grows, if C is non-zero and 
2
 is finite. If all variables are 

independent, then C=0, and the correlation in (7) is zero. The variance of Xi is always non-

negative; if the σ
2 
and C are constant for sufficiently large N, it is easy to see that C  0.  

The amplification of correlation can be seen most dramatically in the flood insurance 

claim data. Suppose we randomly draw pairs of US counties and compute their correlation. The 

green histogram in Figure 11 shows 500 such correlations. The average correlation is 0.04. A 

few counties have high, positive correlations, but the bulk is around zero. Indeed, based on the 

sampling distribution for the normal correlation coefficient, correlations less than 0.37 in 

absolute value would not be statistically distinguishable from zero at the 5% significance level. 

91% of these correlations fall into that category.  
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Figure 11: US flood claims, correlations-of-1 (green),  
correlations-of-100 (blue), and correlations-of-500 (red) 

 

Instead of looking at the correlations between two randomly chosen counties, consider 

summing 100 randomly chosen counties and correlating this with the sum of another, distinct set 

of 100 randomly chosen counties. If we repeat this 500 times, the blue histogram in Figure 11 

results; the average of 500 such correlations-of-100 is 0.23. The red histogram depicts 500 

correlations-of-500, their average value is 0.71. This dramatic increase in correlation is a result 

of the micro-correlations between the individual variables. Compare Figure 11 with Figure 12, in 

which each county is assigned an independent uniform variable, for each of 30 years. The 

correlations-of-1 and correlations-of-500 are effectively the same. Aggregation amplifies micro-

correlations. 
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Figure 12: Correlations-of-1 and correlations-of-500,  
for 30 realizations of independent uniform variables 

 

US Crop loss data shows stronger micro-correlations, and comparable levels of 

amplification are reached at aggregations by 100, as shown in Figure 13. 

 

Figure 13: US Crop losses, correlations-of-1 (green),  
correlations-of-50 (blue), and correlations-of-100 (red) 
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5. Insurance and Policy Implications 

Catastrophic and dependent risks are expensive to insure and this can lead to a 

breakdown in the insurance market. Consider i=1…N policyholders in a given region or line of 

business. While the insurer will be offering other types of coverage besides homeowners 

policies, such as automobile insurance or business interruption insurance, for example, we focus 

just on the homeowners policies. Each year a homeowner faces a potential loss of Li. An insurer 

offers coverage to homeowners at a price equal to q per dollar of coverage (rates may vary across 

lines or regions, but individual-specific rates are not possible). 

The basic theoretical model of an individual’s decision to purchase insurance (e.g., 

Mossin 1968) is formalized in most microeconomics and decision analysis textbooks. Adapted to 

our current set-up, let p be the probability of disaster for each individual, let wi be the 

individual’s total wealth, let αi be the amount of dollars of insurance purchased, and let Li and q 

be defined as in the previous paragraph. The expected utility (EU) for a potential consumer of 

insurance is then given by (deviations from EU theory discussed below): 

 

(8)  EU = (1-p)u(wi- αiq) + pu(w- αiq - Li + αi). 

 

The risk-averse homeowner chooses α by maximizing expected utility (subject to the 

constraint that αi ≥0), giving the first-order condition, assuming an interior solution, (where α* is 

the optimal amount of insurance purchased): 

 

(9)  -q(1-p)u’(w - αi* q) + p(1-q)u’(w- αi*q  - Li + αi*) = 0 

 

Assume insurance is priced actuarially fairly, (ignoring transaction and marketing costs), such 

that p = q. In this case, we get the well-known result that a risk averse consumer, facing actuarial 

rates, will fully insure: αi = Li. With this set-up in hand, we turn now to the insurer’s problem. 

The optimization problem of a solvency-constrained insurer can be modeled as follows. 

Let α=∑ αi* be the portfolio of policies—exposure levels—held by the insurer.  Let total claims 
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for the insurance company—which will vary by the portfolio the company holds—be given by 

Cα=∑ci. An insurer has access to some level of assets to support losses, given by A, and may also 

purchase reinsurance, K, at cost r per dollar covered.
7
  We ignore marketing and transaction 

expenses here, although obviously prices will need to be high enough to cover these costs. For a 

solvency constrained insurer, the firm cannot spend more on claims than the total of revenue 

(Σqαi), assets, and reinsurance. Following Kleindorfer and Klein (2002), expected profits for the 

insurer, E[Π(q, A, K)], are thus given by: 

 

(10)  E[Π(q, A, K)] = Σqαi  – rK – E{Min[Cα, Σqαi + (1-r)K +A]}. 

 

The insurer seeks to keep the probability of insolvency below some target level .
8
  F(Cα) 

is the cumulative distribution function of claims an insurer faces for a given portfolio. The 

insurer will then maximize expected profits subject to the following constraint: 

 

(11)  Pr(Cα > Σqsαi,s + (1 – r)K +A)  ≤  . 

 

Define Sα,  to be the required capital, or surplus, the insurer must have to cover claims that will 

occur with probability 1-  when holding a given portfolio α. Then:   

 

(12)  F
-1

(1- ) = Sα, . 

 

If the policies within the portfolio are micro-correlated, more surplus will be required 

than if they are independent. Similarly, if they are tail dependent, more surplus will be needed. 

                                                 
7 This is, of course, a very simplified construction of reinsurance. For alternate forms of reinsurance, see Ladoucette 

and Teugels (2006). 

8 Here, this probability is taken to be exogenous, perhaps set by capital regulations. For instance, in the EU, 

beginning in 2012, insurance companies will be regulated through the Solvency II regulations.  The Solvency 

Capital Requirement component of the regulations takes a Value-at-Risk (VAR) approach, whereby an insurer must 

keep the probability of insolvency below a certain level, currently set at 0.5 percent.   
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This is illustrated in the Figure 14. Figure 14a compares the sum of 100 lognormal variables 

when they are mutually independent (green) and mutually correlated at 0.01 (red), without tail 

dependence (using the normal copula). This shows that for any conceivable target solvency 

probability, the required surplus is greater for the micro-correlated variables. Figure 14b shows 

similar graphs, except that the correlation is realized by a tail dependent copula (Gumbel). The 

amplification of tail dependence noted in section 3 causes the high quantiles in figure 14b to 

increase dramatically. This means that much more capital will be required for very low values of 

ρ when the variables are tail dependent compared to when they are independent. For fat-tailed 

lines, more capital may be needed, as well, depending on the chosen solvency probability. 

 

Figure 14: Comparing Surplus for Independent and Dependent Sums of lognormal 
variables. Dependence is realized with mutual correlation 0.01 with the normal copula (a) 

and the Gumbel copula (b) 

 

a b 

In these cases of dependence, to maintain the same probability of solvency, premiums 

must increase (either to raise capital directly to meet the surplus requirement or to finance the 

purchase of reinsurance). Two potential difficulties emerge. First, state regulations may limit q. 

It has been noted by insurance scholars that state insurance commissioners in the US—who have 

the power to regulate premiums—tend to weight low prices and availability of policies more 

heavily than solvency considerations or management of catastrophe risk (Klein and Wang 2007).  

If insurers cannot charge prices that they feel are sustainable, they will leave the market (Klein 

2005). This creates the need for so-called residual market mechanisms. These are programs set 

up by states to provide insurance policies to those people who cannot find a policy in the 
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voluntary market. Many residual market mechanisms have underpriced insurance, perhaps out of 

ignorance out of the dependent nature of a risk, or simply due to a lack of foresight or from 

political pressure, creating enormous exposures for states. 

Second, homeowners might not be willing to pay the higher premiums required for 

dependent lines. Most authors refer to an ―actuarially fair price‖ as premiums equaling expected 

loss, or price per dollar of coverage equaling the probability of a loss: q=p. To cover all claims 

below an insolvency probability of , however, premiums will need to be more than expected 

losses. And as just seen, the required surplus for a given  could be even higher for dependent 

lines. 

To get a better understanding of how the extra surplus needed can impact demand, we 

focus on micro-correlated policies and put some numbers to our simple model. Consider a 

policyholder facing a possible loss, L, of $10,000. Let the probability of a loss, p, be 0.01. 

Assume that the insurance company has set =0.005 (this is the draft Solvency II requirement). 

The company writes 10,000 similar policies to homeowners who losses are identical but first 

assumed to be independent. The expected claims for the company are 10,000 $10,000 0.01 and 

the standard deviation of potential claims is √(10,000) stdev(one policy) = $99,498.74. To keep 

the probability of insolvency below  = 0.005, assuming normality, the insurance company must 

have a surplus of $1,256,292. This is a cost of $225.63 per policy.
9
  Expected losses are $100, so 

the ―solvency premium‖ is 1.26 times the expected loss. Since our hypothetical homeowner is 

risk averse, they will be willing to pay a premium that exceeds the expected loss. This is allows 

for a functioning insurance market. 

What happens to the price of insurance in the presence of micro-correlations? If each of 

the 10,000 policies had a micro-correlation, say 0.1, with every other policy, the standard 

deviation of the potential claims jumps to $3,147,842.00. In this case, the required surplus for the 

company is $9,108,304.00. This requires a per policy cost of $910.83. Now the solvency 

premium will be over nine times the ―actuarially fair‖ rate. 

What impact does this have on the homeowner?  To get a first-order estimate, assume the 

homeowner’s utility function is given by ln(wealth). The loss and probability is as above. To 

                                                 
9 This is the cost if the surplus is raised directly from premiums. The price increase for homeowners could be less if 

capital is able to be obtained more cheaply, as discussed further below. 



Resources for the Future Kousky and Cooke 

22 

determine the maximum amount a homeowner would pay above expected losses, utility with 

insurance must be greater than utility without insurance or: 

 

(13)  (1-p)ln(wi – αiq) + pln(w – αiq – Li + αi) ≥ (1 – p)ln(wi) + pln(wi – Li). 

 

This can be simplified to: 

 

(14) [(1–p)/p] ln(1 – (αi / wi)q) ≥ – ln(1 + αi (1–q)/ (wi  – Li)). 

 

Using a Taylor Series approximation, (14) is first order equivalent to: 

 

(15) [(1–p)/p] [ (wi  – Li)/ wi]  (1– q)/q. 

 

The left-hand side of (15) can be filled in with our assumed values of the probability and 

the loss from above. We can then solve for the highest price the homeowner will be willing to 

pay, which will be a function of the homeowner’s wealth. This price can be expressed as a 

multiple of the probability p, or what is often referred to as the ―actuarially fair‖ price. For a loss 

of $10,000 and wealth of $20,000, the homeowner will pay up to 2 times p per dollar coverage. 

In this case, the homeowner will fully insure when the insurer is pooling and pricing for 

independent risks, but not risks with a small correlation. This simple example shows how the 

added cost associated with insuring micro-correlated risks can cause a break down in the 

insurance market.  

Of course, in reality, insurance is not an all or nothing decision, and the homeowner can 

choose to partially insure. Indeed, when q > p, from equation (9), a risk averse homeowner 

(implying the first derivative of their utility is decreasing in wealth) will choose αi* < Li.
10

   

                                                 
10 This can be seen by rearranging the first order condition in (9) to give: u’(w - αi,s*qs) = [ps(1-qs)/ qs(1-ps)]u’(w- 

αi,sqs  - Li + αi,s). For qs>ps, the term in the brackets on the right-hand side of the equation is less than 1. This implies 

that u’(w- αi,sqs  - Li + αi,s)> u’(w - αi,s*qs). Since for a risk averse consumer, u’ is decreasing in wealth, we have: w- 

αi,sqs  - Li + αi,s< w - αi,s*qs  αi,s*<L. 
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Homeowners will first cut back on their coverage, but at a certain point, the price could rise so 

high from dependence in the risks that the homeowner chooses not to insure at all. When this 

happens, the insurer cannot meet their solvency target at a price consumers will pay. 

In this model, the homeowner does not value the coverage at the price offered. In 

practice, there may be two other explanations of why a homeowner may not purchase coverage:  

(1) income constraints or (2) behavioral biases. Some high risk areas are amenity risks, meaning 

that the risk also brings with it other benefits (Kousky, Luttmer, and Zeckhauser 2006). An 

example is hurricane risk on the Gulf coast. The risk is highest for beach front property, which 

also brings with it many amenities, such as a great views and beach access. These are usually 

affluent areas where homeowners can afford to insure against the risk (or self-insure). Noxious 

risks, on the other hand, do not bring with them added benefits and those exposed are often low-

income households. In these situations, society may wish to offer homeowners assistance in 

protection against hazards. Kunruether has suggested vouchers to cover premiums could be 

designed for this purpose (e.g., Kunreuther 2008). 

The second explanation for a homeowner not insuring could be insureds mis-estimating 

the risk due to lack of information or due to many of the well-documented biases individuals 

exhibit when evaluating low-probability risks (e.g., Kahneman, Slovic and Tversky 1982). In the 

simple model presented here, homeowners are assumed to know the probability and loss they 

would face with certainty. In reality, these are often unknown and in forming subjective 

assessments about low-probability risks, homeowners have been found to exhibit a set of biases, 

such as treating low-probability risks as zero-probability and being overly optimistic about losses 

(e.g., Camerer and Kunreuther 1989). For fat-tailed risks, homeowners could also be estimating 

expected loss based on only a few years of their past experience, leading them to believe 

premiums should be low, when insurers are drawing on a longer timeframe to price policies. 

There is already a documented bias toward individuals assuming that small samples are 

representative (Tversky and Kahneman 1982); this is even more pernicious with fat tails. 

In these situations, where homeowners are deemed to be making errors in judgment—that 

is, making choices that give them lower welfare than had they had proper information or 

understood the bias in their decision-making—mandatory insurance has been suggested, as well 

as a variety of information campaigns aimed at improving homeowner understanding of risk 

levels. Insurers could also price in a manner that exploits some of the biases. For instance, to 

help make the extra charges needed for catastrophic and dependent risks more palatable, insurers 

could add a surcharge onto policies for these lines that would be rebated if a catastrophe did not 
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occur that year. This would not be sufficient to build up all the needed reserves, but could 

provide a little more cushion to insurers without (potentially) decreasing demand. 

Thus, either because the homeowner does not value insurance at the price offered, or due 

to income constraints or behavioral biases, the insurance market for catastrophic and dependent 

risks may break down. Insurance, however, generates positive externalities. Insured home- and 

business-owners are more likely to have the funds to rebuild and to do so quickly, generating 

economic spillover effects in the community. As homeowners do not consider the benefits to 

neighbors of insuring, too few people may insure, suggesting a social interest in helping bring 

down the cost of insurance for these risks in order to increase take-up rates. If insurance could be 

provided more cheaply for these risks without threatening the solvency of insurers, it could 

provide both private and public benefits.  

One way the cost of insurance for dependent risks could be brought down is by shifting 

some of the risk to the financial markets, for example, through the use of a catastrophe (cat) 

bond. Cat bonds are issued by (re)insurance companies that set up a separate legal structure 

called a special purpose vehicle (SPV) to issue the bond and invest the proceeds in low-risk 

securities. Investors in the bond receive the interest on the investment as well as some fraction of 

premiums paid by the (re)insurer. If the trigger event does not occur, investors get their principal 

back at the end of the time period of the bond. If the trigger occurs the investors lose their money 

as it is given to the (re)insurer to cover claims.  

There are a few reasons, however, to be skeptical about demand for cat bonds and other 

insurance linked securities (ILS). The possibility of total loss means cat bonds are usually given 

a non-investment grade rating, discouraging some investors. This can at least be partially 

overcome by issuing the bond in tranches (Michel-Kerjan and Morlaye 2008), where, for 

example, one tranche has the principle at risk and the other does not, so it receives a higher rating 

(in this layer, repayment of the principle may be delayed if a disaster occurs). Second, the 

modeling used for the pricing of ILS is often difficult for lay people to follow, which again might 

discourage some investors. Finally, it had been argued cat bonds would be attractive to investors 

since they were likely uncorrelated with the market. This cannot be assumed to be true; a cat 

bond failed to meet an interest payment when Lehman Brothers failed (Hartwig 2009). It likely 

appears that cat bonds and the stock market generally may be tail dependent themselves.  

It has been argued that another mechanism for bringing down the cost of catastrophe 

insurance is allowing for tax-deferred catastrophe reserves (Harrington and Niehaus 2001; 

Milidonis and Grace 2007). Currently, insurance companies must keep catastrophe funds in 
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general surplus accounts where they may be depleted, regulators may treat the extra funds as 

reasons for more stringent price regulations, and additional surplus and the investment earnings 

on it are taxed as income (Klein and Wang 2007). Davidson (1998) uses a simple example to 

explain the problem with taxing capital used to pay catastrophe losses as income. He assumes for 

simplicity an insurer charges $1,000 (the expected loss) of a 1/10 possibility of a $10,000 loss. If 

the $1,000 is taxed in year 1—assuming no losses—then, at a 35% rate, only $650 remains. This 

continues through year 9. Then in year 10, assume the loss occurs. The insurer does not have 

enough to cover the loss. Some can be recouped through carry-back provisions, and in reality, 

premiums will increase to account for the taxation, but it means costs are higher. 

To help overcome this problem, insurers could choose to allocate cat funds to a trust or 

separate account where they could accumulate tax-free, and only be withdrawn for payment of 

claims following pre-defined triggers (Davidson 1998). The trigger could be based on specific 

events or firm-specific catastrophic loss levels. Such a reserve could have firm-specific caps 

based on tail Value-at-Risk (VaR) measures or some other tool. There could be provision for use 

of the funds for other purposes conditional on paying the appropriate taxes.  

These mechanisms can potentially lower the cost of policies to a point where more 

homeowners will choose to insure. For fat-tailed and tail dependent risks, however, the expected 

losses that occur with probability less than  could be quite substantial and these risks are not 

managed by an insurer using VaR approaches. That is, the insurance company will keep the 

solvency probability at , but does not care, given that their loss exceeds VaR , by how much it 

does so. There is no pressure from consumers for insurers to manage risks beyond VaR  either, 

since they are protected by consumer guarantee funds—state programs that pay the claims of 

insolvent insurers. As an example of the perverse incentive the funds create, it has been found 

that property-casualty insurers have excessive premium growth the year before insolvency (Bohn 

and Hall 1999). This is because premiums can be a form of borrowing, since claims will be paid 

later—a cheap form of borrowing—that can be used to make risky investments. This creates, as 

Bohm and Hall note, a ―heads-I-win-tails-somebody-else-loses‖ situation. The excess tail risk is 

essentially transferred to the public.  

If regulators chose to do so, the approaches just discussed for lowering the costs of 

insurance could also be used to cover events beyond the solvency probability. Tail dependent 

losses, for example, may create damages in excess of the VaR . Cat bonds can be used to cover 

these losses. For instance, in April 2007, Swiss Re structured a cat bond covering flood risk in 

the UK that is triggered if there is flooding in at least four of fifty reference locations (Swiss Re 
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2008). Such specially designed ILS may prove useful in managing very low-probability, high-

magnitude losses. 

Some policymakers and scholars have argued that these risks out in the tail of loss 

distributions should be covered by government, or spread among all taxpayers. The federal 

government can more easily smooth losses over time and could potentially pool independent 

risks from around the country. Many of the proposals that have been put forward in Congress, 

however, give implicit or explicit subsidies to states or individuals exposing themselves to these 

risks. Since these risks are a function not just of natural hazards, but our development decisions, 

this could introduce moral hazard, driving up exposure to tail risks. Such proposals should be 

carefully reviewed to insure they are properly aligning incentives to manage these risks. 

We have thus far treated the damage distribution as if it is fixed. In reality, there are a 

variety of mitigating measures that can reduce damages from a disaster. The government should 

prefer to lower damage costs as it reduces ex-post aid, minimizes economic impacts, and reduces 

pain and suffering. Homeowners, too, given the uninsurable costs of a disaster, would prefer, all 

else equal, to protect their home against damage rather than face a risk of disaster and insure. 

Many mitigation measures have also proven to be cost effective, paying for themselves in 

reasonable timeframes.  

Far fewer homes are fortified against disasters, however, than this would suggest. Partly 

this is because insurers do not promote or encourage mitigation (a few state laws forcing 

premium reductions for mitigation are an exception). Homeowners may fail to mitigate for a 

variety of reasons: they underestimate or dismiss the probability of a disaster, are myopic, do not 

see or understand the mitigation in place when purchasing a home, do not have the necessary 

upfront costs, do not consider the benefits to their neighbors, and/or are not as concerned about 

disaster losses due to federal aid (Lewis and Murdoch 1999; Kunreuther 2006). Creative 

solutions around these challenges would provide public benefits. One option is to require 

buildings to conform to stringent building codes when a property is purchased. The cost of the 

mitigation can be incorporated into the mortgage. Another option is tax breaks for homeowners 

who mitigate, as is currently being considered by Congress, or increasing funding to mitigation 

grant programs run by the Federal Emergency Management Agency or states. A more novel 

approach could be to have government finance fortification, with homeowners repaying only 

when a certain magnitude event occurs or slowly over time, like an interest-free loan. Mitigation 

to thin tails and de-couple risks, however promoted, is likely the preferred risk management 

approach to catastrophic and dependent risks. 
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6. Conclusion 

We cannot effectively manage what we don’t measure. Fat tails, tail dependence, and 

micro-correlations are aspects of losses from natural disasters that are currently neglected, 

increasing the risk faced by taxpayers, home- and business-owners, and insurance companies.  

This paper is a first step toward the development of tools to detect, measure, and analyze these 

three phenomena. If the analysis in this paper is correct, the insurance sector may already be 

bumping up against the limit of securitizing natural disaster risks. Market failures in Florida may 

spread to other areas threatened by stronger storms in a warming climate. The current structure 

of private insurance markets in the US may have outlived itself, challenging economists and risk 

analysts to come up with new innovative ways of harnessing market forces to combat risk.  
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